📄 cfind.m
字号:
% MATLAB SIMULATION OF NSA FS-1016 CELP v3.2
% COPYRIGHT (C) 1995-99 ANDREAS SPANIAS AND TED PAINTER
%
% This Copyright applies only to this particular MATLAB implementation
% of the FS-1016 CELP coder. The MATLAB software is intended only for educational
% purposes. No other use is intended or authorized. This is not a public
% domain program and distribution to individuals or networks is strictly
% prohibited. Be aware that use of the standard in any form is goverened
% by rules of the US DoD. Therefore patents and royalties may apply to
% authors, companies, or committees associated with this standard, FS-1016. For
% questions regarding the MATLAB implementation please contact Andreas
% Spanias at (602) 965-1837. For questions on rules,
% royalties, or patents associated with the standard, please contact the DoD.
%
% ALL DERIVATIVE WORKS MUST INCLUDE THIS COPYRIGHT NOTICE.
%
% ******************************************************************
% CFIND
%
% PORTED TO MATLAB FROM CELP 3.2a C RELEASE
% 6-16-94
%
% ******************************************************************
%
% DESCRIPTION
%
% Compute filter coefficients, cepstral coefficients, and filter
% coefficient autocorrelation lags.
%
% DESIGN NOTES
%
% See references.
%
% REFERENCES
%
% 1. "Distance Measures for Speech Processing", A.H. Gray
% and J.D. Markel, IEEE Trans. on ASSP, Vol. ASSP-24,
% no. 5, Oct. 1976
%
% 2. "Quantization and Bit Allocation in Speech Processing",
% A.H. Gray and J.D. Markel, IEEE Trans. on ASSP, Vol. ASSP-24
% no. 6, Dec. 1976
%
% 3. "A Note on Quantization and Bit Allocation in Speech Processing",
% A.H. Gray and J.D. Markel, IEEE Trans. on ASSP, Vol. ASSP-25
% no. 3, June 1977
%
% VARIABLES
%
% INPUTS
% m - Predictor order
% nf - Number of cepstral terms to compute
% r - Autocorrelation sequence
%
% OUTPUTS
% cep - Cepstral coefficients
% ra - Filter autocorrelation lags
% alpha -
% a - Filter coefficients
% rc - Reflection coefficients
%
% INTERNALS
% i - Counter index
% z - Loop upper bound
% q - Intermediate result of filter coefficient comps
% at - " " " "
%
% CONSTANTS
% MAXNO - Filter order
%
% ******************************************************************
function [ cep, ra, alpha, a, rc ] = cfind( m, nf, r )
% DECLARE GLOBAL CONSTANTS
global MAXNO
% INITIALIZE LOCAL VARIABLES AND RETURN VECTORS
a = zeros( (2*MAXNO)+1, 1 );
rc = zeros( (2*MAXNO)+1, 1 );
ra = zeros( m+1, 1 );
cep = zeros( nf, 1 );
a(1) = 1.0;
if r(1) == 0
fprintf( 'find: r(0) = 0.0, resetting to 1e-6\n' );
r(1) = 1.0e-6;
end
% OBTAIN FILTER COEFFICIENTS
rc(1) = -r(2) / r(1);
a(2) = rc(1);
alpha = r(1) * ( 1.0 - ( a(2) * a(2) ) );
for i = 2:m
q = r(i+1) + sum( a(2:i) .* r(i:-1:2) );
q = -q / alpha;
rc(i) = q;
z = fix( i/2 );
at = a(2:z+1) + ( q * a(i:-1:i-z+1) );
a(i:-1:i-z+1) = a(i:-1:i-z+1) + ( q * a(2:z+1) );
a(2:z+1) = at;
a(i+1) = q;
alpha = alpha * ( 1 - ( q * q ) );
% TRAP UNSTABLE FILTER
if alpha <= 0.00
fprintf( 'find: unstable filter\n' );
end
end
% EVALUATE CEPSTRUM
cep(1) = a(2);
for i = 2:m
cep(i) = i * a(i+1);
cep(i) = cep(i) - sum( cep(1:i-1) .* a(i:-1:2) );
end
if nf > m
for i = m:nf-1
cep(i+1) = -sum( cep(i:-1:i-m+1) .* a(2:m+1) );
end
cep = -cep ./ (1:nf)';
end
% EVALUATE FILTER POLYNOMIAL AUTOCORRELATION
for i = 1:m+1
ra(i) = sum( a(1:m-i+2) .* a(i:m+1) );
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -