⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 polygon.java

📁 gcc的组建
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
   * @param y the Y coordinate of the point to test   * @return true if the point is inside this polygon   * @see #contains(double, double)   * @since 1.1   */  public boolean contains(int x, int y)  {    return contains((double) x, (double) y);  }  /**   * Tests whether or not the specified point is inside this polygon.   *   * @param x the X coordinate of the point to test   * @param y the Y coordinate of the point to test   * @return true if the point is inside this polygon   * @see #contains(double, double)   * @deprecated use {@link #contains(int, int)} instead   */  public boolean inside(int x, int y)  {    return contains((double) x, (double) y);  }  /**   * Returns a high-precision bounding box of this polygon. This is the   * smallest rectangle with sides parallel to the X axis that will contain   * this polygon.   *   * @return the bounding box for this polygon   * @see #getBounds()   * @since 1.2   */  public Rectangle2D getBounds2D()  {    // For polygons, the integer version is exact!    return getBounds();  }  /**   * Tests whether or not the specified point is inside this polygon.   *   * @param x the X coordinate of the point to test   * @param y the Y coordinate of the point to test   * @return true if the point is inside this polygon   * @since 1.2   */  public boolean contains(double x, double y)  {    return ((evaluateCrossings(x, y, false, BIG_VALUE) & 1) != 0);  }  /**   * Tests whether or not the specified point is inside this polygon.   *   * @param p the point to test   * @return true if the point is inside this polygon   * @throws NullPointerException if p is null   * @see #contains(double, double)   * @since 1.2   */  public boolean contains(Point2D p)  {    return contains(p.getX(), p.getY());  }  /**   * Test if a high-precision rectangle intersects the shape. This is true   * if any point in the rectangle is in the shape. This implementation is   * precise.   *   * @param x the x coordinate of the rectangle   * @param y the y coordinate of the rectangle   * @param w the width of the rectangle, treated as point if negative   * @param h the height of the rectangle, treated as point if negative   * @return true if the rectangle intersects this shape   * @since 1.2   */  public boolean intersects(double x, double y, double w, double h)  {    /* Does any edge intersect? */    if (evaluateCrossings(x, y, false, w) != 0 /* top */        || evaluateCrossings(x, y + h, false, w) != 0 /* bottom */        || evaluateCrossings(x + w, y, true, h) != 0 /* right */        || evaluateCrossings(x, y, true, h) != 0) /* left */      return true;    /* No intersections, is any point inside? */    if ((evaluateCrossings(x, y, false, BIG_VALUE) & 1) != 0)      return true;    return false;  }  /**   * Test if a high-precision rectangle intersects the shape. This is true   * if any point in the rectangle is in the shape. This implementation is   * precise.   *   * @param r the rectangle   * @return true if the rectangle intersects this shape   * @throws NullPointerException if r is null   * @see #intersects(double, double, double, double)   * @since 1.2   */  public boolean intersects(Rectangle2D r)  {    return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight());  }  /**   * Test if a high-precision rectangle lies completely in the shape. This is   * true if all points in the rectangle are in the shape. This implementation   * is precise.   *   * @param x the x coordinate of the rectangle   * @param y the y coordinate of the rectangle   * @param w the width of the rectangle, treated as point if negative   * @param h the height of the rectangle, treated as point if negative   * @return true if the rectangle is contained in this shape   * @since 1.2   */  public boolean contains(double x, double y, double w, double h)  {    if (! getBounds2D().intersects(x, y, w, h))      return false;    /* Does any edge intersect? */    if (evaluateCrossings(x, y, false, w) != 0 /* top */        || evaluateCrossings(x, y + h, false, w) != 0 /* bottom */        || evaluateCrossings(x + w, y, true, h) != 0 /* right */        || evaluateCrossings(x, y, true, h) != 0) /* left */      return false;    /* No intersections, is any point inside? */    if ((evaluateCrossings(x, y, false, BIG_VALUE) & 1) != 0)      return true;    return false;  }  /**   * Test if a high-precision rectangle lies completely in the shape. This is   * true if all points in the rectangle are in the shape. This implementation   * is precise.   *   * @param r the rectangle   * @return true if the rectangle is contained in this shape   * @throws NullPointerException if r is null   * @see #contains(double, double, double, double)   * @since 1.2   */  public boolean contains(Rectangle2D r)  {    return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight());  }  /**   * Return an iterator along the shape boundary. If the optional transform   * is provided, the iterator is transformed accordingly. Each call returns   * a new object, independent from others in use. This class is not   * threadsafe to begin with, so the path iterator is not either.   *   * @param transform an optional transform to apply to the iterator   * @return a new iterator over the boundary   * @since 1.2   */  public PathIterator getPathIterator(final AffineTransform transform)  {    return new PathIterator()      {	/** The current vertex of iteration. */	private int vertex;	public int getWindingRule()	{	  return WIND_EVEN_ODD;	}	public boolean isDone()	{	  return vertex > npoints;	}	public void next()	{	  vertex++;	}	public int currentSegment(float[] coords)	{	  if (vertex >= npoints)	    return SEG_CLOSE;	  coords[0] = xpoints[vertex];	  coords[1] = ypoints[vertex];	  if (transform != null)	    transform.transform(coords, 0, coords, 0, 1);	  return vertex == 0 ? SEG_MOVETO : SEG_LINETO;	}	public int currentSegment(double[] coords)	{	  if (vertex >= npoints)	    return SEG_CLOSE;	  coords[0] = xpoints[vertex];	  coords[1] = ypoints[vertex];	  if (transform != null)	    transform.transform(coords, 0, coords, 0, 1);	  return vertex == 0 ? SEG_MOVETO : SEG_LINETO;	}      };  }  /**   * Return an iterator along the flattened version of the shape boundary.   * Since polygons are already flat, the flatness parameter is ignored, and   * the resulting iterator only has SEG_MOVETO, SEG_LINETO and SEG_CLOSE   * points. If the optional transform is provided, the iterator is   * transformed accordingly. Each call returns a new object, independent   * from others in use. This class is not threadsafe to begin with, so the   * path iterator is not either.   *   * @param transform an optional transform to apply to the iterator   * @param flatness the maximum distance for deviation from the real boundary   * @return a new iterator over the boundary   * @since 1.2   */  public PathIterator getPathIterator(AffineTransform transform,                                      double flatness)  {    return getPathIterator(transform);  }  /**   * Helper for contains, intersects, calculates the number of intersections   * between the polygon and a line extending from the point (x, y) along   * the positive X, or Y axis, within a given interval.   *   * @return the winding number.   * @see #contains(double, double)   */  private int evaluateCrossings(double x, double y, boolean useYaxis,                                double distance)  {    double x0;    double x1;    double y0;    double y1;    double epsilon = 0.0;    int crossings = 0;    int[] xp;    int[] yp;    if (useYaxis)      {	xp = ypoints;	yp = xpoints;	double swap;	swap = y;	y = x;	x = swap;      }    else      {	xp = xpoints;	yp = ypoints;      }    /* Get a value which is small but not insignificant relative the path. */    epsilon = 1E-7;    x0 = xp[0] - x;    y0 = yp[0] - y;    for (int i = 1; i < npoints; i++)      {	x1 = xp[i] - x;	y1 = yp[i] - y;	if (y0 == 0.0)	  y0 -= epsilon;	if (y1 == 0.0)	  y1 -= epsilon;	if (y0 * y1 < 0)	  if (Line2D.linesIntersect(x0, y0, x1, y1, epsilon, 0.0, distance, 0.0))	    ++crossings;	x0 = xp[i] - x;	y0 = yp[i] - y;      }    // end segment    x1 = xp[0] - x;    y1 = yp[0] - y;    if (y0 == 0.0)      y0 -= epsilon;    if (y1 == 0.0)      y1 -= epsilon;    if (y0 * y1 < 0)      if (Line2D.linesIntersect(x0, y0, x1, y1, epsilon, 0.0, distance, 0.0))	++crossings;    return crossings;  }} // class Polygon

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -