⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dtoa.c

📁 gcc的组建
💻 C
📖 第 1 页 / 共 2 页
字号:
/**************************************************************** * * The author of this software is David M. Gay. * * Copyright (c) 1991 by AT&T. * * Permission to use, copy, modify, and distribute this software for any * purpose without fee is hereby granted, provided that this entire notice * is included in all copies of any software which is or includes a copy * or modification of this software and in all copies of the supporting * documentation for such software. * * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. * ***************************************************************//* Please send bug reports to	David M. Gay	AT&T Bell Laboratories, Room 2C-463	600 Mountain Avenue	Murray Hill, NJ 07974-2070	U.S.A.	dmg@research.att.com or research!dmg */#include "mprec.h"#include <string.h>static int_DEFUN (quorem,	(b, S),	_Jv_Bigint * b _AND _Jv_Bigint * S){  int n;  long borrow, y;  unsigned long carry, q, ys;  unsigned long *bx, *bxe, *sx, *sxe;#ifdef Pack_32  long z;  unsigned long si, zs;#endif  n = S->_wds;#ifdef DEBUG  /*debug*/ if (b->_wds > n)    /*debug*/ Bug ("oversize b in quorem");#endif  if (b->_wds < n)    return 0;  sx = S->_x;  sxe = sx + --n;  bx = b->_x;  bxe = bx + n;  q = *bxe / (*sxe + 1);	/* ensure q <= true quotient */#ifdef DEBUG  /*debug*/ if (q > 9)    /*debug*/ Bug ("oversized quotient in quorem");#endif  if (q)    {      borrow = 0;      carry = 0;      do	{#ifdef Pack_32	  si = *sx++;	  ys = (si & 0xffff) * q + carry;	  zs = (si >> 16) * q + (ys >> 16);	  carry = zs >> 16;	  y = (*bx & 0xffff) - (ys & 0xffff) + borrow;	  borrow = y >> 16;	  Sign_Extend (borrow, y);	  z = (*bx >> 16) - (zs & 0xffff) + borrow;	  borrow = z >> 16;	  Sign_Extend (borrow, z);	  Storeinc (bx, z, y);#else	  ys = *sx++ * q + carry;	  carry = ys >> 16;	  y = *bx - (ys & 0xffff) + borrow;	  borrow = y >> 16;	  Sign_Extend (borrow, y);	  *bx++ = y & 0xffff;#endif	}      while (sx <= sxe);      if (!*bxe)	{	  bx = b->_x;	  while (--bxe > bx && !*bxe)	    --n;	  b->_wds = n;	}    }  if (cmp (b, S) >= 0)    {      q++;      borrow = 0;      carry = 0;      bx = b->_x;      sx = S->_x;      do	{#ifdef Pack_32	  si = *sx++;	  ys = (si & 0xffff) + carry;	  zs = (si >> 16) + (ys >> 16);	  carry = zs >> 16;	  y = (*bx & 0xffff) - (ys & 0xffff) + borrow;	  borrow = y >> 16;	  Sign_Extend (borrow, y);	  z = (*bx >> 16) - (zs & 0xffff) + borrow;	  borrow = z >> 16;	  Sign_Extend (borrow, z);	  Storeinc (bx, z, y);#else	  ys = *sx++ + carry;	  carry = ys >> 16;	  y = *bx - (ys & 0xffff) + borrow;	  borrow = y >> 16;	  Sign_Extend (borrow, y);	  *bx++ = y & 0xffff;#endif	}      while (sx <= sxe);      bx = b->_x;      bxe = bx + n;      if (!*bxe)	{	  while (--bxe > bx && !*bxe)	    --n;	  b->_wds = n;	}    }  return q;}#ifdef DEBUG#include <stdio.h>voidprint (_Jv_Bigint * b){  int i, wds;  unsigned long *x, y;  wds = b->_wds;  x = b->_x+wds;  i = 0;  do    {      x--;      fprintf (stderr, "%08x", *x);    }  while (++i < wds);  fprintf (stderr, "\n");}#endif/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. * * Inspired by "How to Print Floating-Point Numbers Accurately" by * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101]. * * Modifications: *	1. Rather than iterating, we use a simple numeric overestimate *	   to determine k = floor(log10(d)).  We scale relevant *	   quantities using O(log2(k)) rather than O(k) multiplications. *	2. For some modes > 2 (corresponding to ecvt and fcvt), we don't *	   try to generate digits strictly left to right.  Instead, we *	   compute with fewer bits and propagate the carry if necessary *	   when rounding the final digit up.  This is often faster. *	3. Under the assumption that input will be rounded nearest, *	   mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. *	   That is, we allow equality in stopping tests when the *	   round-nearest rule will give the same floating-point value *	   as would satisfaction of the stopping test with strict *	   inequality. *	4. We remove common factors of powers of 2 from relevant *	   quantities. *	5. When converting floating-point integers less than 1e16, *	   we use floating-point arithmetic rather than resorting *	   to multiple-precision integers. *	6. When asked to produce fewer than 15 digits, we first try *	   to get by with floating-point arithmetic; we resort to *	   multiple-precision integer arithmetic only if we cannot *	   guarantee that the floating-point calculation has given *	   the correctly rounded result.  For k requested digits and *	   "uniformly" distributed input, the probability is *	   something like 10^(k-15) that we must resort to the long *	   calculation. */char *_DEFUN (_dtoa_r,	(ptr, _d, mode, ndigits, decpt, sign, rve, float_type),	struct _Jv_reent *ptr _AND	double _d _AND	int mode _AND	int ndigits _AND	int *decpt _AND	int *sign _AND	char **rve _AND	int float_type){  /*	float_type == 0 for double precision, 1 for float.	Arguments ndigits, decpt, sign are similar to those	of ecvt and fcvt; trailing zeros are suppressed from	the returned string.  If not null, *rve is set to point	to the end of the return value.  If d is +-Infinity or NaN,	then *decpt is set to 9999.	mode:		0 ==> shortest string that yields d when read in			and rounded to nearest.		1 ==> like 0, but with Steele & White stopping rule;			e.g. with IEEE P754 arithmetic , mode 0 gives			1e23 whereas mode 1 gives 9.999999999999999e22.		2 ==> max(1,ndigits) significant digits.  This gives a			return value similar to that of ecvt, except			that trailing zeros are suppressed.		3 ==> through ndigits past the decimal point.  This			gives a return value similar to that from fcvt,			except that trailing zeros are suppressed, and			ndigits can be negative.		4-9 should give the same return values as 2-3, i.e.,			4 <= mode <= 9 ==> same return as mode			2 + (mode & 1).  These modes are mainly for			debugging; often they run slower but sometimes			faster than modes 2-3.		4,5,8,9 ==> left-to-right digit generation.		6-9 ==> don't try fast floating-point estimate			(if applicable).		> 16 ==> Floating-point arg is treated as single precision.		Values of mode other than 0-9 are treated as mode 0.		Sufficient space is allocated to the return value		to hold the suppressed trailing zeros.	*/  int bbits, b2, b5, be, dig, i, ieps, ilim0, j, j1, k, k0,    k_check, leftright, m2, m5, s2, s5, try_quick;  int ilim = 0, ilim1 = 0, spec_case = 0;  union double_union d, d2, eps;  long L;#ifndef Sudden_Underflow  int denorm;  unsigned long x;#endif  _Jv_Bigint *b, *b1, *delta, *mlo = NULL, *mhi, *S;  double ds;  char *s, *s0;  d.d = _d;  if (ptr->_result)    {      ptr->_result->_k = ptr->_result_k;      ptr->_result->_maxwds = 1 << ptr->_result_k;      Bfree (ptr, ptr->_result);      ptr->_result = 0;    }  if (word0 (d) & Sign_bit)    {      /* set sign for everything, including 0's and NaNs */      *sign = 1;      word0 (d) &= ~Sign_bit;	/* clear sign bit */    }  else    *sign = 0;#if defined(IEEE_Arith) + defined(VAX)#ifdef IEEE_Arith  if ((word0 (d) & Exp_mask) == Exp_mask)#else  if (word0 (d) == 0x8000)#endif    {      /* Infinity or NaN */      *decpt = 9999;      s =#ifdef IEEE_Arith	!word1 (d) && !(word0 (d) & 0xfffff) ? "Infinity" :#endif	"NaN";      if (rve)	*rve =#ifdef IEEE_Arith	  s[3] ? s + 8 :#endif	  s + 3;      return s;    }#endif#ifdef IBM  d.d += 0;			/* normalize */#endif  if (!d.d)    {      *decpt = 1;      s = "0";      if (rve)	*rve = s + 1;      return s;    }  b = d2b (ptr, d.d, &be, &bbits);#ifdef Sudden_Underflow  i = (int) (word0 (d) >> Exp_shift1 & (Exp_mask >> Exp_shift1));#else  if ((i = (int) (word0 (d) >> Exp_shift1 & (Exp_mask >> Exp_shift1))))    {#endif      d2.d = d.d;      word0 (d2) &= Frac_mask1;      word0 (d2) |= Exp_11;#ifdef IBM      if (j = 11 - hi0bits (word0 (d2) & Frac_mask))	d2.d /= 1 << j;#endif      /* log(x)	~=~ log(1.5) + (x-1.5)/1.5		 * log10(x)	 =  log(x) / log(10)		 *		~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))		 * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)		 *		 * This suggests computing an approximation k to log10(d) by		 *		 * k = (i - Bias)*0.301029995663981		 *	+ ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );		 *		 * We want k to be too large rather than too small.		 * The error in the first-order Taylor series approximation		 * is in our favor, so we just round up the constant enough		 * to compensate for any error in the multiplication of		 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,		 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,		 * adding 1e-13 to the constant term more than suffices.		 * Hence we adjust the constant term to 0.1760912590558.		 * (We could get a more accurate k by invoking log10,		 *  but this is probably not worthwhile.)		 */      i -= Bias;#ifdef IBM      i <<= 2;      i += j;#endif#ifndef Sudden_Underflow      denorm = 0;    }  else    {      /* d is denormalized */      i = bbits + be + (Bias + (P - 1) - 1);      x = i > 32 ? word0 (d) << (64 - i) | word1 (d) >> (i - 32)	: word1 (d) << (32 - i);      d2.d = x;      word0 (d2) -= 31 * Exp_msk1;	/* adjust exponent */      i -= (Bias + (P - 1) - 1) + 1;      denorm = 1;    }#endif  ds = (d2.d - 1.5) * 0.289529654602168 + 0.1760912590558 + i * 0.301029995663981;  k = (int) ds;  if (ds < 0. && ds != k)    k--;			/* want k = floor(ds) */  k_check = 1;  if (k >= 0 && k <= Ten_pmax)    {      if (d.d < tens[k])	k--;      k_check = 0;    }  j = bbits - i - 1;  if (j >= 0)    {      b2 = 0;      s2 = j;    }  else    {      b2 = -j;      s2 = 0;    }  if (k >= 0)    {      b5 = 0;      s5 = k;      s2 += k;    }  else    {      b2 -= k;      b5 = -k;      s5 = 0;    }  if (mode < 0 || mode > 9)    mode = 0;  try_quick = 1;  if (mode > 5)    {      mode -= 4;      try_quick = 0;    }  leftright = 1;  switch (mode)    {    case 0:    case 1:      ilim = ilim1 = -1;      i = 18;      ndigits = 0;      break;    case 2:      leftright = 0;      /* no break */    case 4:      if (ndigits <= 0)	ndigits = 1;      ilim = ilim1 = i = ndigits;      break;    case 3:      leftright = 0;      /* no break */    case 5:      i = ndigits + k + 1;      ilim = i;      ilim1 = i - 1;      if (i <= 0)	i = 1;    }  j = sizeof (unsigned long);  for (ptr->_result_k = 0; (int) (sizeof (_Jv_Bigint) - sizeof (unsigned long)) + j <= i;       j <<= 1)    ptr->_result_k++;  ptr->_result = Balloc (ptr, ptr->_result_k);  s = s0 = (char *) ptr->_result;  if (ilim >= 0 && ilim <= Quick_max && try_quick)    {      /* Try to get by with floating-point arithmetic. */      i = 0;      d2.d = d.d;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -