📄 intrinsic.texi
字号:
@end smallexample@item @emph{Specific names}:@multitable @columnfractions .24 .24 .24 .24@item Name @tab Argument @tab Return type @tab Option@item @code{DATAN(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab f95, gnu@end multitable@end table@node ATAN2@section @code{ATAN2} --- Arctangent function @findex @code{ATAN2} intrinsic@findex @code{DATAN2} intrinsic@cindex arctangent@table @asis@item @emph{Description}:@code{ATAN2(Y,X)} computes the arctangent of the complex number @math{X + i Y}.@item @emph{Option}:f95, gnu@item @emph{Class}:elemental function@item @emph{Syntax}:@code{X = ATAN2(Y,X)}@item @emph{Arguments}:@multitable @columnfractions .15 .80@item @var{Y} @tab The type shall be @code{REAL(*)}.@item @var{X} @tab The type and kind type parameter shall be the same as @var{Y}.If @var{Y} is zero, then @var{X} must be nonzero.@end multitable@item @emph{Return value}:The return value has the same type and kind type parameter as @var{Y}.It is the principle value of the complex number @math{X + i Y}. If@var{X} is nonzero, then it lies in the range @math{-\pi \le \arccos (x) \leq \pi}.The sign is positive if @var{Y} is positive. If @var{Y} is zero, thenthe return value is zero if @var{X} is positive and @math{\pi} if @var{X}is negative. Finally, if @var{X} is zero, then the magnitude of the resultis @math{\pi/2}.@item @emph{Example}:@smallexampleprogram test_atan2 real(4) :: x = 1.e0_4, y = 0.5e0_4 x = atan2(y,x)end program test_atan2@end smallexample@item @emph{Specific names}:@multitable @columnfractions .24 .24 .24 .24@item Name @tab Argument @tab Return type @tab Option@item @code{DATAN2(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab f95, gnu@end multitable@end table@node BESJ0@section @code{BESJ0} --- Bessel function of the first kind of order 0@findex @code{BESJ0} intrinsic@findex @code{DBESJ0} intrinsic@cindex Bessel@table @asis@item @emph{Description}:@code{BESJ0(X)} computes the Bessel function of the first kind of order 0of @var{X}.@item @emph{Option}:gnu@item @emph{Class}:elemental function@item @emph{Syntax}:@code{X = BESJ0(X)}@item @emph{Arguments}:@multitable @columnfractions .15 .80@item @var{X} @tab The type shall be @code{REAL(*)}, and it shall be scalar.@end multitable@item @emph{Return value}:The return value is of type @code{REAL(*)} and it lies in therange @math{ - 0.4027... \leq Bessel (0,x) \leq 1}.@item @emph{Example}:@smallexampleprogram test_besj0 real(8) :: x = 0.0_8 x = besj0(x)end program test_besj0@end smallexample@item @emph{Specific names}:@multitable @columnfractions .24 .24 .24 .24@item Name @tab Argument @tab Return type @tab Option@item @code{DBESJ0(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab gnu@end multitable@end table@node BESJ1@section @code{BESJ1} --- Bessel function of the first kind of order 1@findex @code{BESJ1} intrinsic@findex @code{DBESJ1} intrinsic@cindex Bessel@table @asis@item @emph{Description}:@code{BESJ1(X)} computes the Bessel function of the first kind of order 1of @var{X}.@item @emph{Option}:gnu@item @emph{Class}:elemental function@item @emph{Syntax}:@code{X = BESJ1(X)}@item @emph{Arguments}:@multitable @columnfractions .15 .80@item @var{X} @tab The type shall be @code{REAL(*)}, and it shall be scalar.@end multitable@item @emph{Return value}:The return value is of type @code{REAL(*)} and it lies in therange @math{ - 0.5818... \leq Bessel (0,x) \leq 0.5818 }.@item @emph{Example}:@smallexampleprogram test_besj1 real(8) :: x = 1.0_8 x = besj1(x)end program test_besj1@end smallexample@item @emph{Specific names}:@multitable @columnfractions .24 .24 .24 .24@item Name @tab Argument @tab Return type @tab Option@item @code{DBESJ1(X)}@tab @code{REAL(8) X} @tab @code{REAL(8)} @tab gnu@end multitable@end table@node BESJN@section @code{BESJN} --- Bessel function of the first kind@findex @code{BESJN} intrinsic@findex @code{DBESJN} intrinsic@cindex Bessel@table @asis@item @emph{Description}:@code{BESJN(N, X)} computes the Bessel function of the first kind of order@var{N} of @var{X}.@item @emph{Option}:gnu@item @emph{Class}:elemental function@item @emph{Syntax}:@code{Y = BESJN(N, X)}@item @emph{Arguments}:@multitable @columnfractions .15 .80@item @var{N} @tab The type shall be @code{INTEGER(*)}, and it shall be scalar.@item @var{X} @tab The type shall be @code{REAL(*)}, and it shall be scalar.@end multitable@item @emph{Return value}:The return value is a scalar of type @code{REAL(*)}.@item @emph{Example}:@smallexampleprogram test_besjn real(8) :: x = 1.0_8 x = besjn(5,x)end program test_besjn@end smallexample@item @emph{Specific names}:@multitable @columnfractions .24 .24 .24 .24@item Name @tab Argument @tab Return type @tab Option@item @code{DBESJN(X)} @tab @code{INTEGER(*) N} @tab @code{REAL(8)} @tab gnu@item @tab @code{REAL(8) X} @tab @tab@end multitable@end table@node BESY0@section @code{BESY0} --- Bessel function of the second kind of order 0@findex @code{BESY0} intrinsic@findex @code{DBESY0} intrinsic@cindex Bessel@table @asis@item @emph{Description}:@code{BESY0(X)} computes the Bessel function of the second kind of order 0of @var{X}.@item @emph{Option}:gnu@item @emph{Class}:elemental function@item @emph{Syntax}:@code{X = BESY0(X)}@item @emph{Arguments}:@multitable @columnfractions .15 .80@item @var{X} @tab The type shall be @code{REAL(*)}, and it shall be scalar.@end multitable@item @emph{Return value}:The return value is a scalar of type @code{REAL(*)}.@item @emph{Example}:@smallexampleprogram test_besy0 real(8) :: x = 0.0_8 x = besy0(x)end program test_besy0@end smallexample@item @emph{Specific names}:@multitable @columnfractions .24 .24 .24 .24@item Name @tab Argument @tab Return type @tab Option@item @code{DBESY0(X)}@tab @code{REAL(8) X} @tab @code{REAL(8)} @tab gnu@end multitable@end table@node BESY1@section @code{BESY1} --- Bessel function of the second kind of order 1@findex @code{BESY1} intrinsic@findex @code{DBESY1} intrinsic@cindex Bessel@table @asis@item @emph{Description}:@code{BESY1(X)} computes the Bessel function of the second kind of order 1of @var{X}.@item @emph{Option}:gnu@item @emph{Class}:elemental function@item @emph{Syntax}:@code{X = BESY1(X)}@item @emph{Arguments}:@multitable @columnfractions .15 .80@item @var{X} @tab The type shall be @code{REAL(*)}, and it shall be scalar.@end multitable@item @emph{Return value}:The return value is a scalar of type @code{REAL(*)}.@item @emph{Example}:@smallexampleprogram test_besy1 real(8) :: x = 1.0_8 x = besy1(x)end program test_besy1@end smallexample@item @emph{Specific names}:@multitable @columnfractions .24 .24 .24 .24@item Name @tab Argument @tab Return type @tab Option@item @code{DBESY1(X)}@tab @code{REAL(8) X} @tab @code{REAL(8)} @tab gnu@end multitable@end table@node BESYN@section @code{BESYN} --- Bessel function of the second kind@findex @code{BESYN} intrinsic@findex @code{DBESYN} intrinsic@cindex Bessel@table @asis@item @emph{Description}:@code{BESYN(N, X)} computes the Bessel function of the second kind of order@var{N} of @var{X}.@item @emph{Option}:gnu@item @emph{Class}:elemental function@item @emph{Syntax}:@code{Y = BESYN(N, X)}@item @emph{Arguments}:@multitable @columnfractions .15 .80@item @var{N} @tab The type shall be @code{INTEGER(*)}, and it shall be scalar.@item @var{X} @tab The type shall be @code{REAL(*)}, and it shall be scalar.@end multitable@item @emph{Return value}:The return value is a scalar of type @code{REAL(*)}.@item @emph{Example}:@smallexampleprogram test_besyn real(8) :: x = 1.0_8 x = besyn(5,x)end program test_besyn@end smallexample@item @emph{Specific names}:@multitable @columnfractions .24 .24 .24 .24@item Name @tab Argument @tab Return type @tab Option@item @code{DBESYN(N,X)} @tab @code{INTEGER(*) N} @tab @code{REAL(8)} @tab gnu@item @tab @code{REAL(8) X} @tab @tab @end multitable@end table@node BIT_SIZE@section @code{BIT_SIZE} --- Bit size inquiry function@findex @code{BIT_SIZE} intrinsic@cindex bit_size@table @asis@item @emph{Description}:@code{BIT_SIZE(I)} returns the number of bits (integer precision plus sign bit)represented by the type of @var{I}.@item @emph{Option}:f95, gnu@item @emph{Class}:elemental function@item @emph{Syntax}:@code{I = BIT_SIZE(I)}@item @emph{Arguments}:@multitable @columnfractions .15 .80@item @var{I} @tab The type shall be @code{INTEGER(*)}.@end multitable@item @emph{Return value}:The return value is of type @code{INTEGER(*)}@item @emph{Example}:@smallexampleprogram test_bit_size integer :: i = 123 integer :: size size = bit_size(i) print *, sizeend program test_bit_size@end smallexample@end table@node BTEST@section @code{BTEST} --- Bit test function@findex @code{BTEST} intrinsic@cindex BTEST@table @asis@item @emph{Description}:@code{BTEST(I,POS)} returns logical @code{.TRUE.} if the bit at @var{POS}in @var{I} is set.@item @emph{Option}:f95, gnu@item @emph{Class}:elemental function@item @emph{Syntax}:@code{I = BTEST(I,POS)}@item @emph{Arguments}:@multitable @columnfractions .15 .80@item @var{I} @tab The type shall be @code{INTEGER(*)}.@item @var{POS} @tab The type shall be @code{INTEGER(*)}.@end multitable@item @emph{Return value}:The return value is of type @code{LOGICAL}@item @emph{Example}:@smallexampleprogram test_btest integer :: i = 32768 + 1024 + 64 integer :: pos logical :: bool do pos=0,16 bool = btest(i, pos) print *, pos, bool end doend program test_btest@end smallexample@end table@node CEILING@section @code{CEILING} --- Integer ceiling function@findex @code{CEILING} intrinsic@cindex CEILING@table @asis@item @emph{Description}:@code{CEILING(X)} returns the least integer greater than or equal to @var{X}.@item @emph{Option}:f95, gnu@item @emph{Class}:elemental function@item @emph{Syntax}:@code{I = CEILING(X[,KIND])}@item @emph{Arguments}:@multitable @columnfractions .15 .80@item @var{X} @tab The type shall be @code{REAL(*)}.@item @var{KIND} @tab Optional scaler integer initialization expression.@end multitable@item @emph{Return value}:The return value is of type @code{INTEGER(KIND)}@item @emph{Example}:@smallexampleprogram test_ceiling real :: x = 63.29 real :: y = -63.59 print *, ceiling(x) ! returns 64 print *, ceiling(y) ! returns -63end program test_ceiling@end smallexample@end table@node CHAR@section @code{CHAR} --- Character conversion function@findex @code{CHAR} intrinsic@cindex CHAR@table @asis@item @emph{Description}:@code{CHAR(I,[KIND])} returns the character represented by the integer @var{I}.@item @emph{Option}:f95, gnu@item @emph{Class}:elemental function
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -