⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 stl_alloc.h

📁 TSP问题的一个类库 有源代码和stl
💻 H
📖 第 1 页 / 共 2 页
字号:
            // to result in disaster on multi-process machines.
            for (__i = __size;
                 __i <= (size_t) _MAX_BYTES;
                 __i += (size_t) _ALIGN) {
                __my_free_list = _S_free_list + _S_freelist_index(__i);
                __p = *__my_free_list;
                if (0 != __p) {
                    *__my_free_list = __p -> _M_free_list_link;
                    _S_start_free = (char*)__p;
                    _S_end_free = _S_start_free + __i;
                    return(_S_chunk_alloc(__size, __nobjs));
                    // Any leftover piece will eventually make it to the
                    // right free list.
                }
            }
	    _S_end_free = 0;	// In case of exception.
            _S_start_free = (char*)malloc_alloc::allocate(__bytes_to_get);
            // This should either throw an
            // exception or remedy the situation.  Thus we assume it
            // succeeded.
        }
        _S_heap_size += __bytes_to_get;
        _S_end_free = _S_start_free + __bytes_to_get;
        return(_S_chunk_alloc(__size, __nobjs));
    }
}


/* Returns an object of size __n, and optionally adds to size __n free list.*/
/* We assume that __n is properly aligned.                                */
/* We hold the allocation lock.                                         */
template <bool __threads, int __inst>
void*
__default_alloc_template<__threads, __inst>::_S_refill(size_t __n)
{
    int __nobjs = 20;
    char* __chunk = _S_chunk_alloc(__n, __nobjs);
    _Obj* __STL_VOLATILE* __my_free_list;
    _Obj* __result;
    _Obj* __current_obj;
    _Obj* __next_obj;
    int __i;

    if (1 == __nobjs) return(__chunk);
    __my_free_list = _S_free_list + _S_freelist_index(__n);

    /* Build free list in chunk */
      __result = (_Obj*)__chunk;
      *__my_free_list = __next_obj = (_Obj*)(__chunk + __n);
      for (__i = 1; ; __i++) {
        __current_obj = __next_obj;
        __next_obj = (_Obj*)((char*)__next_obj + __n);
        if (__nobjs - 1 == __i) {
            __current_obj -> _M_free_list_link = 0;
            break;
        } else {
            __current_obj -> _M_free_list_link = __next_obj;
        }
      }
    return(__result);
}

template <bool threads, int inst>
void*
__default_alloc_template<threads, inst>::reallocate(void* __p,
                                                    size_t __old_sz,
                                                    size_t __new_sz)
{
    void* __result;
    size_t __copy_sz;

    if (__old_sz > (size_t) _MAX_BYTES && __new_sz > (size_t) _MAX_BYTES) {
        return(realloc(__p, __new_sz));
    }
    if (_S_round_up(__old_sz) == _S_round_up(__new_sz)) return(__p);
    __result = allocate(__new_sz);
    __copy_sz = __new_sz > __old_sz? __old_sz : __new_sz;
    memcpy(__result, __p, __copy_sz);
    deallocate(__p, __old_sz);
    return(__result);
}

#ifdef __STL_THREADS
    template <bool __threads, int __inst>
    _STL_mutex_lock
    __default_alloc_template<__threads, __inst>::_S_node_allocator_lock
        __STL_MUTEX_INITIALIZER;
#endif


template <bool __threads, int __inst>
char* __default_alloc_template<__threads, __inst>::_S_start_free = 0;

template <bool __threads, int __inst>
char* __default_alloc_template<__threads, __inst>::_S_end_free = 0;

template <bool __threads, int __inst>
size_t __default_alloc_template<__threads, __inst>::_S_heap_size = 0;

template <bool __threads, int __inst>
__default_alloc_template<__threads, __inst>::_Obj* __STL_VOLATILE
__default_alloc_template<__threads, __inst> ::_S_free_list[
# ifdef __SUNPRO_CC
    _NFREELISTS
# else
    __default_alloc_template<__threads, __inst>::_NFREELISTS
# endif
] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, };
// The 16 zeros are necessary to make version 4.1 of the SunPro
// compiler happy.  Otherwise it appears to allocate too little
// space for the array.

#endif /* ! __USE_MALLOC */

// This implements allocators as specified in the C++ standard.  
//
// Note that standard-conforming allocators use many language features
// that are not yet widely implemented.  In particular, they rely on
// member templates, partial specialization, partial ordering of function
// templates, the typename keyword, and the use of the template keyword
// to refer to a template member of a dependent type.

#ifdef __STL_USE_STD_ALLOCATORS

template <class _Tp>
class allocator {
  typedef alloc _Alloc;          // The underlying allocator.
public:
  typedef size_t     size_type;
  typedef ptrdiff_t  difference_type;
  typedef _Tp*       pointer;
  typedef const _Tp* const_pointer;
  typedef _Tp&       reference;
  typedef const _Tp& const_reference;
  typedef _Tp        value_type;

  template <class _Tp1> struct rebind {
    typedef allocator<_Tp1> other;
  };

  allocator() __STL_NOTHROW {}
  allocator(const allocator&) __STL_NOTHROW {}
  template <class _Tp1> allocator(const allocator<_Tp1>&) __STL_NOTHROW {}
  ~allocator() __STL_NOTHROW {}

  pointer address(reference __x) const { return &__x; }
  const_pointer address(const_reference __x) const { return &__x; }

  // __n is permitted to be 0.  The C++ standard says nothing about what
  // the return value is when __n == 0.
  _Tp* allocate(size_type __n, const void* = 0) {
    return __n != 0 ? static_cast<_Tp*>(_Alloc::allocate(__n * sizeof(_Tp))) 
                    : 0;
  }

  // __p is not permitted to be a null pointer.
  void deallocate(pointer __p, size_type __n)
    { _Alloc::deallocate(__p, __n * sizeof(_Tp)); }

  size_type max_size() const __STL_NOTHROW 
    { return size_t(-1) / sizeof(_Tp); }

  void construct(pointer __p, const _Tp& __val) { new(__p) _Tp(__val); }
  void destroy(pointer __p) { __p->~_Tp(); }
};

template<>
class allocator<void> {
public:
  typedef size_t      size_type;
  typedef ptrdiff_t   difference_type;
  typedef void*       pointer;
  typedef const void* const_pointer;
  typedef void        value_type;

  template <class _Tp1> struct rebind {
    typedef allocator<_Tp1> other;
  };
};


template <class _T1, class _T2>
inline bool operator==(const allocator<_T1>&, const allocator<_T2>&) 
{
  return true;
}

template <class _T1, class _T2>
inline bool operator!=(const allocator<_T1>&, const allocator<_T2>&)
{
  return false;
}

// Allocator adaptor to turn an SGI-style allocator (e.g. alloc, malloc_alloc)
// into a standard-conforming allocator.   Note that this adaptor does
// *not* assume that all objects of the underlying alloc class are
// identical, nor does it assume that all of the underlying alloc's
// member functions are static member functions.  Note, also, that 
// __allocator<_Tp, alloc> is essentially the same thing as allocator<_Tp>.

template <class _Tp, class _Alloc>
struct __allocator {
  _Alloc __underlying_alloc;

  typedef size_t    size_type;
  typedef ptrdiff_t difference_type;
  typedef _Tp*       pointer;
  typedef const _Tp* const_pointer;
  typedef _Tp&       reference;
  typedef const _Tp& const_reference;
  typedef _Tp        value_type;

  template <class _Tp1> struct rebind {
    typedef __allocator<_Tp1, _Alloc> other;
  };

  __allocator() __STL_NOTHROW {}
  __allocator(const __allocator& __a) __STL_NOTHROW
    : __underlying_alloc(__a.__underlying_alloc) {}
  template <class _Tp1> 
  __allocator(const __allocator<_Tp1, _Alloc>& __a) __STL_NOTHROW
    : __underlying_alloc(__a.__underlying_alloc) {}
  ~__allocator() __STL_NOTHROW {}

  pointer address(reference __x) const { return &__x; }
  const_pointer address(const_reference __x) const { return &__x; }

  // __n is permitted to be 0.
  _Tp* allocate(size_type __n, const void* = 0) {
    return __n != 0 
        ? static_cast<_Tp*>(__underlying_alloc.allocate(__n * sizeof(_Tp))) 
        : 0;
  }

  // __p is not permitted to be a null pointer.
  void deallocate(pointer __p, size_type __n)
    { __underlying_alloc.deallocate(__p, __n * sizeof(_Tp)); }

  size_type max_size() const __STL_NOTHROW 
    { return size_t(-1) / sizeof(_Tp); }

  void construct(pointer __p, const _Tp& __val) { new(__p) _Tp(__val); }
  void destroy(pointer __p) { __p->~_Tp(); }
};

template <class _Alloc>
class __allocator<void, _Alloc> {
  typedef size_t      size_type;
  typedef ptrdiff_t   difference_type;
  typedef void*       pointer;
  typedef const void* const_pointer;
  typedef void        value_type;

  template <class _Tp1> struct rebind {
    typedef __allocator<_Tp1, _Alloc> other;
  };
};

template <class _Tp, class _Alloc>
inline bool operator==(const __allocator<_Tp, _Alloc>& __a1,
                       const __allocator<_Tp, _Alloc>& __a2)
{
  return __a1.__underlying_alloc == __a2.__underlying_alloc;
}

#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
template <class _Tp, class _Alloc>
inline bool operator!=(const __allocator<_Tp, _Alloc>& __a1,
                       const __allocator<_Tp, _Alloc>& __a2)
{
  return __a1.__underlying_alloc != __a2.__underlying_alloc;
}
#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */

// Comparison operators for all of the predifined SGI-style allocators.
// This ensures that __allocator<malloc_alloc> (for example) will
// work correctly.

template <int inst>
inline bool operator==(const __malloc_alloc_template<inst>&,
                       const __malloc_alloc_template<inst>&)
{
  return true;
}

#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
template <int __inst>
inline bool operator!=(const __malloc_alloc_template<__inst>&,
                       const __malloc_alloc_template<__inst>&)
{
  return false;
}
#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */

template <bool __threads, int __inst>
inline bool operator==(const __default_alloc_template<__threads, __inst>&,
                       const __default_alloc_template<__threads, __inst>&)
{
  return true;
}

#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
template <bool __threads, int __inst>
inline bool operator!=(const __default_alloc_template<__threads, __inst>&,
                       const __default_alloc_template<__threads, __inst>&)
{
  return false;
}
#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */

template <class _Alloc>
inline bool operator==(const debug_alloc<_Alloc>&,
                       const debug_alloc<_Alloc>&) {
  return true;
}

#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
template <class _Alloc>
inline bool operator!=(const debug_alloc<_Alloc>&,
                       const debug_alloc<_Alloc>&) {
  return false;
}
#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */

// Another allocator adaptor: _Alloc_traits.  This serves two
// purposes.  First, make it possible to write containers that can use
// either SGI-style allocators or standard-conforming allocator.
// Second, provide a mechanism so that containers can query whether or
// not the allocator has distinct instances.  If not, the container
// can avoid wasting a word of memory to store an empty object.

// This adaptor uses partial specialization.  The general case of
// _Alloc_traits<_Tp, _Alloc> assumes that _Alloc is a
// standard-conforming allocator, possibly with non-equal instances
// and non-static members.  (It still behaves correctly even if _Alloc
// has static member and if all instances are equal.  Refinements
// affect performance, not correctness.)

// There are always two members: allocator_type, which is a standard-
// conforming allocator type for allocating objects of type _Tp, and
// _S_instanceless, a static const member of type bool.  If
// _S_instanceless is true, this means that there is no difference
// between any two instances of type allocator_type.  Furthermore, if
// _S_instanceless is true, then _Alloc_traits has one additional
// member: _Alloc_type.  This type encapsulates allocation and
// deallocation of objects of type _Tp through a static interface; it
// has two member functions, whose signatures are
//    static _Tp* allocate(size_t)
//    static void deallocate(_Tp*, size_t)

// The fully general version.

template <class _Tp, class _Allocator>
struct _Alloc_traits
{
  static const bool _S_instanceless = false;
  typedef typename _Allocator::__STL_TEMPLATE rebind<_Tp>::other 
          allocator_type;
};

template <class _Tp, class _Allocator>
const bool _Alloc_traits<_Tp, _Allocator>::_S_instanceless;

// The version for the default allocator.

template <class _Tp, class _Tp1>
struct _Alloc_traits<_Tp, allocator<_Tp1> >
{
  static const bool _S_instanceless = true;
  typedef simple_alloc<_Tp, alloc> _Alloc_type;
  typedef allocator<_Tp> allocator_type;
};

// Versions for the predefined SGI-style allocators.

template <class _Tp, int __inst>
struct _Alloc_traits<_Tp, __malloc_alloc_template<__inst> >
{
  static const bool _S_instanceless = true;
  typedef simple_alloc<_Tp, __malloc_alloc_template<__inst> > _Alloc_type;
  typedef __allocator<_Tp, __malloc_alloc_template<__inst> > allocator_type;
};

template <class _Tp, bool __threads, int __inst>
struct _Alloc_traits<_Tp, __default_alloc_template<__threads, __inst> >
{
  static const bool _S_instanceless = true;
  typedef simple_alloc<_Tp, __default_alloc_template<__threads, __inst> > 
          _Alloc_type;
  typedef __allocator<_Tp, __default_alloc_template<__threads, __inst> > 
          allocator_type;
};

template <class _Tp, class _Alloc>
struct _Alloc_traits<_Tp, debug_alloc<_Alloc> >
{
  static const bool _S_instanceless = true;
  typedef simple_alloc<_Tp, debug_alloc<_Alloc> > _Alloc_type;
  typedef __allocator<_Tp, debug_alloc<_Alloc> > allocator_type;
};

// Versions for the __allocator adaptor used with the predefined
// SGI-style allocators.

template <class _Tp, class _Tp1, int __inst>
struct _Alloc_traits<_Tp, 
                     __allocator<_Tp1, __malloc_alloc_template<__inst> > >
{
  static const bool _S_instanceless = true;
  typedef simple_alloc<_Tp, __malloc_alloc_template<__inst> > _Alloc_type;
  typedef __allocator<_Tp, __malloc_alloc_template<__inst> > allocator_type;
};

template <class _Tp, class _Tp1, bool __thr, int __inst>
struct _Alloc_traits<_Tp, 
                      __allocator<_Tp1, 
                                  __default_alloc_template<__thr, __inst> > >
{
  static const bool _S_instanceless = true;
  typedef simple_alloc<_Tp, __default_alloc_template<__thr,__inst> > 
          _Alloc_type;
  typedef __allocator<_Tp, __default_alloc_template<__thr,__inst> > 
          allocator_type;
};

template <class _Tp, class _Tp1, class _Alloc>
struct _Alloc_traits<_Tp, __allocator<_Tp1, debug_alloc<_Alloc> > >
{
  static const bool _S_instanceless = true;
  typedef simple_alloc<_Tp, debug_alloc<_Alloc> > _Alloc_type;
  typedef __allocator<_Tp, debug_alloc<_Alloc> > allocator_type;
};


#endif /* __STL_USE_STD_ALLOCATORS */

#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma reset woff 1174
#endif

__STL_END_NAMESPACE

#undef __PRIVATE

#endif /* __SGI_STL_INTERNAL_ALLOC_H */

// Local Variables:
// mode:C++
// End:

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -