⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 can.c

📁 LPC11C14 CAN 代码
💻 C
📖 第 1 页 / 共 5 页
字号:
    canRegWrite((unsigned long)&ptBase->IF1_MCTRL, 0);
    
    //
    // Loop through to program all 32 message objects
    //
    for(iMsg = 1; iMsg <= 32; iMsg++)
    {
        //
        // Wait for busy bit to clear
        //
        while(canRegRead((unsigned long)&ptBase->IF1_CMDREQ) & CAN_IF1CRQ_BUSY)
        {
        }
        
        //
        // Initiate programming the message object
        //
        canRegWrite((unsigned long)&ptBase->IF1_CMDREQ, iMsg);
    }
    
    //
    // Make sure that the interrupt and new data flags are updated for the
    // message objects.
    //
    canRegWrite((unsigned long)&ptBase->IF1_CMDMSK, CAN_IF1CMSK_NEWDAT |
    CAN_IF1CMSK_CLRINTPND);
    
    //
    // Loop through to program all 32 message objects
    //
    for(iMsg = 1; iMsg <= 32; iMsg++)
    {
        //
        // Wait for busy bit to clear.
        //
        while(canRegRead((unsigned long)&ptBase->IF1_CMDREQ) & CAN_IF1CRQ_BUSY)
        {
        }
        
        //
        // Initiate programming the message object
        //
        canRegWrite((unsigned long)&ptBase->IF1_CMDREQ, iMsg);
    }
    
    //
    // Acknowledge any pending status interrupts.
    //
    canRegRead((unsigned long)&ptBase->STAT);
}

//*****************************************************************************
//
//! Enables the CAN controller.
//!
//! \param ptBase is the base address of the CAN controller to enable.
//!
//! Enables the CAN controller for message processing.  Once enabled, the
//! controller will automatically transmit any pending frames, and process any
//! received frames.  The controller can be stopped by calling CANDisable().
//! Prior to calling CANEnable(), CANInit() should have been called to
//! initialize the controller and the CAN bus clock should be configured by
//! calling CANBitTimingSet().
//!
//! \return None.
//
//*****************************************************************************
void
CANEnable(unsigned long ulBaseAddr)
{
    LPC_CAN_TypeDef *ptBase = (LPC_CAN_TypeDef *)ulBaseAddr;
    //
    // Check the arguments.
    //
    ASSERT(CANBaseValid((unsigned long)ptBase));
    
    //
    // Clear the init bit in the control register.
    //
    canRegWrite((unsigned long)&ptBase->CNTL,
    canRegRead((unsigned long)&ptBase->CNTL) & ~CAN_CTL_INIT);
}

//*****************************************************************************
//
//! Disables the CAN controller.
//!
//! \param ptBase is the base address of the CAN controller to disable.
//!
//! Disables the CAN controller for message processing.  When disabled, the
//! controller will no longer automatically process data on the CAN bus.  The
//! controller can be restarted by calling CANEnable().  The state of the CAN
//! controller and the message objects in the controller are left as they were
//! before this call was made.
//!
//! \return None.
//
//*****************************************************************************
void
CANDisable(unsigned long ulBaseAddr)
{
    LPC_CAN_TypeDef *ptBase = (LPC_CAN_TypeDef *)ulBaseAddr;
    //
    // Check the arguments.
    //
    ASSERT(CANBaseValid((unsigned long)ptBase));
    
    //
    // Set the init bit in the control register.
    //
    canRegWrite((unsigned long)&ptBase->CNTL,
    canRegRead((unsigned long)&ptBase->CNTL) | CAN_CTL_INIT);
}

//*****************************************************************************
//
//! Reads the current settings for the CAN controller bit timing.
//!
//! \param ptBase is the base address of the CAN controller.
//! \param pClkParms is a pointer to a structure to hold the timing parameters.
//!
//! This function reads the current configuration of the CAN controller bit
//! clock timing, and stores the resulting information in the structure
//! supplied by the caller.  Refer to CANBitTimingSet() for the meaning of the
//! values that are returned in the structure pointed to by \e pClkParms.
//!
//! This function replaces the original CANGetBitTiming() API and performs the
//! same actions.  A macro is provided in <tt>can.h</tt> to map the original
//! API to this API.
//!
//! \return None.
//
//*****************************************************************************
void
CANBitTimingGet(unsigned long ulBaseAddr, CAN_BIT_CLK_PARM *pClkParms)
{
    unsigned int uBitReg;
    LPC_CAN_TypeDef *ptBase = (LPC_CAN_TypeDef *)ulBaseAddr;
    
    //
    // Check the arguments.
    //
    ASSERT(CANBaseValid((unsigned long)ptBase));
    ASSERT(pClkParms != 0);
    
    //
    // Read out all the bit timing values from the CAN controller registers.
    //
    uBitReg = canRegRead((unsigned long)&ptBase->BT);
    
    //
    // Set the phase 2 segment.
    //
    pClkParms->uPhase2Seg = ((uBitReg & CAN_BIT_TSEG2_M) >> 12) + 1;
    
    //
    // Set the phase 1 segment.
    //
    pClkParms->uSyncPropPhase1Seg = ((uBitReg & CAN_BIT_TSEG1_M) >> 8) + 1;
    
    //
    // Set the sychronous jump width.
    //
    pClkParms->uSJW = ((uBitReg & CAN_BIT_SJW_M) >> 6) + 1;
    
    //
    // Set the pre-divider for the CAN bus bit clock.
    //
    pClkParms->uQuantumPrescaler =
    ((uBitReg & CAN_BIT_BRP_M) |
    ((canRegRead((unsigned long)&ptBase->BRPE) & CAN_BRPE_BRPE_M) << 6)) + 1;
}

//*****************************************************************************
//
//! Configures the CAN controller bit timing.
//!
//! \param ptBase is the base address of the CAN controller.
//! \param pClkParms points to the structure with the clock parameters.
//!
//! Configures the various timing parameters for the CAN bus bit timing:
//! Propagation segment, Phase Buffer 1 segment, Phase Buffer 2 segment, and
//! the Synchronization Jump Width.  The values for Propagation and Phase
//! Buffer 1 segments are derived from the combination
//! \e pClkParms->uSyncPropPhase1Seg parameter.  Phase Buffer 2 is determined
//! from the \e pClkParms->uPhase2Seg parameter.  These two parameters, along
//! with \e pClkParms->uSJW are based in units of bit time quanta.  The actual
//! quantum time is determined by the \e pClkParms->uQuantumPrescaler value,
//! which specifies the divisor for the CAN module clock.
//!
//! The total bit time, in quanta, will be the sum of the two Seg parameters,
//! as follows:
//!
//! bit_time_q = uSyncPropPhase1Seg + uPhase2Seg + 1
//!
//! Note that the Sync_Seg is always one quantum in duration, and will be added
//! to derive the correct duration of Prop_Seg and Phase1_Seg.
//!
//! The equation to determine the actual bit rate is as follows:
//!
//! CAN Clock /
//! ((\e uSyncPropPhase1Seg + \e uPhase2Seg + 1) * (\e uQuantumPrescaler))
//!
//! This means that with \e uSyncPropPhase1Seg = 4, \e uPhase2Seg = 1,
//! \e uQuantumPrescaler = 2 and an 8 MHz CAN clock, that the bit rate will be
//! (8 MHz) / ((5 + 2 + 1) * 2) or 500 Kbit/sec.
//!
//! This function replaces the original CANSetBitTiming() API and performs the
//! same actions.  A macro is provided in <tt>can.h</tt> to map the original
//! API to this API.
//!
//! \return None.
//
//*****************************************************************************
void
CANBitTimingSet(unsigned long ulBaseAddr, CAN_BIT_CLK_PARM *pClkParms)
{
    unsigned int uBitReg;
    unsigned int uSavedInit;
    LPC_CAN_TypeDef *ptBase = (LPC_CAN_TypeDef *)ulBaseAddr;
    
    //
    // Check the arguments.
    //
    ASSERT(CANBaseValid((unsigned long)ptBase));
    ASSERT(pClkParms != 0);
    
    //
    // The phase 1 segment must be in the range from 2 to 16.
    //
    ASSERT((pClkParms->uSyncPropPhase1Seg >= 2) &&
    (pClkParms->uSyncPropPhase1Seg <= 16));
    
    //
    // The phase 2 segment must be in the range from 1 to 8.
    //
    ASSERT((pClkParms->uPhase2Seg >= 1) && (pClkParms->uPhase2Seg <= 8));
    
    //
    // The synchronous jump windows must be in the range from 1 to 4.
    //
    ASSERT((pClkParms->uSJW >= 1) && (pClkParms->uSJW <= 4));
    
    //
    // The CAN clock pre-divider must be in the range from 1 to 1024.
    //
    ASSERT((pClkParms->uQuantumPrescaler <= 1024) &&
    (pClkParms->uQuantumPrescaler >= 1));
    
    //
    // To set the bit timing register, the controller must be placed in init
    // mode (if not already), and also configuration change bit enabled.  State
    // of the init bit should be saved so it can be restored at the end.
    //
    uSavedInit = canRegRead((unsigned long)&ptBase->CNTL);
    canRegWrite((unsigned long)&ptBase->CNTL, uSavedInit | CAN_CTL_INIT | CAN_CTL_CCE);
    
    //
    // Set the bit fields of the bit timing register according to the parms.
    //
    uBitReg = ((pClkParms->uPhase2Seg - 1) << 12) & CAN_BIT_TSEG2_M;
    uBitReg |= ((pClkParms->uSyncPropPhase1Seg - 1) << 8) & CAN_BIT_TSEG1_M;
    uBitReg |= ((pClkParms->uSJW - 1) << 6) & CAN_BIT_SJW_M;
    uBitReg |= (pClkParms->uQuantumPrescaler - 1) & CAN_BIT_BRP_M;
    canRegWrite((unsigned long)&ptBase->BT, uBitReg);
    
    //
    // Set the divider upper bits in the extension register.
    //
    canRegWrite((unsigned long)&ptBase->BRPE,
    ((pClkParms->uQuantumPrescaler - 1) >> 6) & CAN_BRPE_BRPE_M);
    //
    // Clear the config change bit, and restore the init bit.
    //
    uSavedInit &= ~CAN_CTL_CCE;
    
    //
    // If Init was not set before, then clear it.
    //
    if(uSavedInit & CAN_CTL_INIT)
    {
        uSavedInit &= ~CAN_CTL_INIT;
    }
    canRegWrite((unsigned long)&ptBase->CNTL, uSavedInit);
}

//*****************************************************************************
//
//! Registers an interrupt handler for the CAN controller.
//!
//! \param ptBase is the base address of the CAN controller.
//! \param pfnHandler is a pointer to the function to be called when the
//! enabled CAN interrupts occur.
//!
//! This function registers the interrupt handler in the interrupt vector
//! table, and enables CAN interrupts on the interrupt controller; specific CAN
//! interrupt sources must be enabled using CANIntEnable().  The interrupt
//! handler being registered must clear the source of the interrupt using
//! CANIntClear().
//!
//! If the application is using a static interrupt vector table stored in
//! flash, then it is not necessary to register the interrupt handler this way.
//! Instead, IntEnable() should be used to enable CAN interrupts on the
//! interrupt controller.
//!
//! \sa IntRegister() for important information about registering interrupt
//! handlers.
//!
//! \return None.
//
//*****************************************************************************
//中断注册函数
void IntRegister(unsigned long ulSn, void (*pfnHandler)(void))
{
    ;
}

void CANIntRegister(unsigned long ulBaseAddr, void (*pfnHandler)(void))
{
    unsigned long ulIntNumber;
    
    //
    // Check the arguments.
    //
    ASSERT(CANBaseValid(ulBaseAddr));
    
    //
    // Get the actual interrupt number for this CAN controller.
    //
    ulIntNumber = __canIntNumberGet(ulBaseAddr);
    
    //
    // Register the interrupt handler.
    //
    IntRegister(ulIntNumber, pfnHandler);
    
    //
    // Enable the Ethernet interrupt.
    //
    IntEnable(ulIntNumber);
}


//*****************************************************************************
//
//! Enables individual CAN controller interrupt sources.
//!
//! \param ptBase is the base address of the CAN controller.
//! \param ulIntFlags is the bit mask of the interrupt sources to be enabled.
//!
//! Enables specific interrupt sources of the CAN controller.  Only enabled
//! sources will cause a processor interrupt.
//!
//! The \e ulIntFlags parameter is the logical OR of any of the following:
//!
//! - \b CAN_INT_ERROR - a controller error condition has occurred
//! - \b CAN_INT_STATUS - a message transfer has completed, or a bus error has
//! been detected
//! - \b CAN_INT_MASTER - allow CAN controller to generate interrupts
//!
//! In order to generate any interrupts, \b CAN_INT_MASTER must be enabled.
//! Further, for any particular transaction from a message object to generate
//! an interrupt, that message object must have interrupts enabled (see
//! CANMessageSet()).  \b CAN_INT_ERROR will generate an interrupt if the
//! controller enters the ``bus off'' condition, or if the error counters reach
//! a limit.  \b CAN_INT_STATUS will generate an interrupt under quite a few
//! status conditions and may provide more interrupts than the application
//! needs to handle.  When an interrupt occurs, use CANIntStatus() to determine

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -