⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 qr.src

📁 没有说明
💻 SRC
字号:
/*
** qr.src - Procedures related to the QR decomposition.
** (C) Copyright 1988-1998 by Aptech Systems, Inc.
** All Rights Reserved.
**
** This Software Product is PROPRIETARY SOURCE CODE OF APTECH
** SYSTEMS, INC.    This File Header must accompany all files using
** any portion, in whole or in part, of this Source Code.   In
** addition, the right to create such files is strictly limited by
** Section 2.A. of the GAUSS Applications License Agreement
** accompanying this Software Product.
**
** If you wish to distribute any portion of the proprietary Source
** Code, in whole or in part, you must first obtain written
** permission from Aptech Systems.
**
** These functions require GAUSS 3.0.
**
**  Format                   Purpose                                     Line
** ---------------------------------------------------------------------------
**   r       = QR(x);           QR decomposition                          30
** { r,e }   = QRE(x);          QR decomposition with pivoting           163
** { r,e }   = QREP(x,pvt);     QR decomposition with pivoting control   317
*/
#include qr.ext



/*
**> qr
**
**  Purpose:    Computes the orthogonal-triangular (qr)
**              decomposition of a matrix X, such that:
**
**                          X = Q1*R.                               (17)
**
**  Format:     R = qr(x);
**
**  Input:      X    NxP matrix.
**
**  Output:     R    LxP upper triangular matrix, L = min(N,P).
**
**  Remarks:   qr is the same as qqr but doesn't return the Q1 matrix.
**             If Q1 is not wanted, qr will save a significant amount
**             of time and memory usage, especially for large problems.
**
**             Given X, there is an orthogonal matrix Q such that Q' * X
**             is zero below its diagonal, i.e.,
**
**                   Q'* X =  [ R ]                              (18)
**                            [ 0 ]
**
**             where R is upper triangular.  If we partition
**
**                   Q = [ Q1 Q2 ]                               (19)
**
**             where Q1 has P columns then
**
**                   X = Q1 * R                                   (20)
**
**             is the qr decomposition of X.  If X has linearly
**             independent columns, R is also the Cholesky factorization of
**             the moment matrix of X, i.e., of X'* X.            (21)
**
**             qr does not return the Q matrix because in most cases it is
**             not required and can be very large.  If you need the Q1 matrix
**             see the GAUSS function qqr.  If you need the entire Q matrix
**             call qyr with Y set to a conformable identity
**             matrix.
**
**             For most problems Q'* Y, Q1'* Y, or Q * Y, Q1 * Y,
**             for some Y, are required.  For these cases see qtyr and qyr.
**
**             For linear equation or least squares problems, which require Q2
**             for computing residuals and residual sums of squares, see olsqr.
**
**             If N < P the factorization assumes the form:
**
**                   Q'* X = [ R1  R2 ]                              (22)
**
**             where R1 is a PxP upper triangular matrix and R2 is Px(N-P).
**             Thus Q is a PxP matrix and R is a PxN matrix containing R1 and
**             R2.  This type of factorization is useful for the solution of
**             underdetermined systems.  However,  (unless the linearly
**             independent columns happen to be the initial rows) such an
**             analysis also requires pivoting (see qre and qrep).
**
**
**
** Globals:    _qrdc, _qrsl
**
** See Also:  qqr, qrep, qtyre
**
*/

proc (1) = qr(x);
    local flag,n,p,qraux,work,pvt,job,dum,info,qy,r,v,i,y,k,dif;

    /* check for complex input */
    if iscplx(x);
        if hasimag(x);
            errorlog "ERROR: Not implemented for complex matrices.";
            end;
        else;
            x = real(x);
        endif;
    endif;

    n = rows(x);
    p = cols(x);
    qraux = zeros(p,1);
    work = qraux;
    pvt = qraux;

    dum = 0;
    info = 0;
    job = 10000;    /* compute qy only */
    qy = zeros(n,1);
    x = x';

    flag = 0;

#ifDLLCALL
#else

    if rows(_qrdc) /= 647 or _qrdc[1] $== 0;
        _qrdc = zeros(647,1);
        loadexe _qrdc = qrdc.rex;
    endif;
    callexe _qrdc(x,n,n,p,qraux,pvt,work,flag);

#endif

#ifDLLCALL

    dllcall qrdc(x,n,n,p,qraux,pvt,work,flag);

#endif

    k = minc(n|p);
    dif = abs(n-p);

    if n > p;
        r = trimr(x',0,dif);
        v = seqa(1,1,p);    /* use to create mask */
        r = r .*( v .<= v' );       /* R */
    elseif p > n;
        v = seqa(1,1,p);    /* use to create mask */
        v = v .<= v';
        v = trimr(v,0,dif);
        r = x' .* v ;        /* R */
    else;
        v = seqa(1,1,p);    /* use to create mask */
        v = v .<= v';
        r = x' .* v ;        /* R */
    endif;

    retp(r);
endp;


/*
**> qre
**
**  Purpose:    Computes the orthogonal-triangular (qr)
**              decomposition of a matrix X, such that:
**
**                         X[.,E] = Q1*R.                       (23)
**
**  Format:     { R,E } = qre(X);
**
**  Input:       X    NxP matrix.
**
**  Output:      R    LxP upper triangular matrix, L = min(N,P).
**
**               E    Px1 permutation vector.
**
**  Remarks:   qre is the same as qqre but doesn't return the Q1 matrix.
**             If Q1 is not wanted, qre will save a significant amount
**             of time and memory usage, especially for large problems.
**
**             Given X[.,E], where E is a permutation vector that permutes
**             the columns of X, there is an orthogonal matrix Q such that
**             Q' * X[.,E] is zero below its diagonal, i.e.,
**
**                   Q'* X[.,E] = [ R ]                            (24)
**                                [ 0 ]
**
**             where R is upper triangular.
**             If we partition
**
**                   Q = [ Q1 Q2 ]                                (25)
**
**             where Q1 has P columns then
**
**                    X[.,E] = Q1 * R                            (26)
**
**             is the qr decomposition of X[.,E].                (27)
**
**             qre does not return the Q matrix because in most cases it is
**             not required and can be very large.  If you need the Q1 matrix
**             see the GAUSS function qqre.  If you need the entire Q matrix
**             call qyre with Y set to a conformable identity
**             matrix.  For most problems Q'* Y, Q1'* Y, or Q * Y, Q1 * Y,
**             for some Y, are required.  For these cases see qtyre and qyre.

**             If X has rank P, then the columns of X will
**             not be permuted.  If X has rank M < P, then the M linearly
**             independent columns are permuted to the front of X
**             by E.  Partition the permuted X in the following way:
**
**                    X[.,E] = [ X1 X2 ]                               (28)
**
**             where X1 is NxM and X2 is Nx(P-M).  Further partition R
**             in the following way:
**
**                   R = [ R11 R12 ]                                   (29)
**                       [  0   0  ]
**
**             where R11 is MxM and R12 is Mx(P-M).  Then
**
**                   A = inv(R11)*R12                                 (30)
**
**             and
**
**                   X2 = X1*A.                                       (31)
**
**             that is, A is an Mx(P-N) matrix defining the linear
**             combinations of X2 with respect to X1.
**
**             If N < P the factorization assumes the form:
**
**                   Q'* X = [ R1  R2 ]                              (32)
**
**             where R1 is a PxP upper triangular matrix and R2 is Px(N-P).
**             Thus Q is a PxP matrix and R is a PxN matrix containing R1 and
**             R2.  This type of factorization is useful for the solution of
**             underdetermined systems.  For the solution of
**
**                   X[.,E] * b = Y
**                                                                 (33)
**             it can be shown that
**
**                  b = qrsol(Q'Y,R1) | zeros(N-P,1);
**
**             The explicit formation here of Q, which can be a very large
**             matrix, can be avoided by using the GAUSS function qtyre.
**
**             For further discussion of qr factorizations see the documentation
**             for the GAUSS function qqr.
**
**  Globals:    _qrdc
**
**  See Also:   qqr, olsqr
*/

proc (2) = qre(x);
    local flag,n,p,qraux,work,pvt,r,v,k,dif;

    /* check for complex input */
    if iscplx(x);
        if hasimag(x);
            errorlog "ERROR: Not implemented for complex matrices.";
            end;
        else;
            x = real(x);
        endif;
    endif;

    n = rows(x);
    p = cols(x);
    qraux = zeros(p,1);
    work = qraux;
    pvt = qraux;
    x = x';

    flag = 1;

#ifDLLCALL
#else

    if rows(_qrdc) /= 647 or _qrdc[1] $== 0;
        _qrdc = zeros(647,1);
        loadexe _qrdc = qrdc.rex;
    endif;
    callexe _qrdc(x,n,n,p,qraux,pvt,work,flag);

#endif

#ifDLLCALL

    dllcall qrdc(x,n,n,p,qraux,pvt,work,flag);

#endif

    k = minc(n|p);
    dif = abs(n-p);

    if n > p;
        r = trimr(x',0,dif);
        v = seqa(1,1,p);    /* use to create mask */
        r = r .*( v .<= v' );       /* R */
    elseif p > n;
        v = seqa(1,1,p);    /* use to create mask */
        v = v .<= v';
        v = trimr(v,0,dif);
        r = x' .* v ;        /* R */
    else;
        v = seqa(1,1,p);    /* use to create mask */
        v = v .<= v';
        r = x' .* v ;        /* R */
    endif;
    retp(r,pvt);
endp;

/*
**> qrep
**
**  Purpose:    Computes the orthogonal-triangular (QR)
**              decomposition of a matrix X, such that:
**
**                          X[.,E] = Q1*R.                       (34)
**
**  Format:     { R,E } = qrep(X,PVT);
**
**  Input:      X      NxP matrix.
**
**              PVT    Px1 vector, controls the selection of the pivot
**                     columns:
**
**                          if PVT[i] gt 0 then X[i] is an initial column
**                          if PVT[i] eq 0 then X[i] is a free column
**                          if PVT[i] lt 0 then X[i] is a final column
**
**                     The initial columns are placed at the beginning
**                     of the matrix and the final columns are placed
**                     at the end.  Only the free columns will be moved
**                     during the decomposition.
**
**  Output:     R      LxP upper triangular matrix, L = min(N,P).
**
**              E      Px1 permutation vector.
**
**  Remarks:   qrep is the same as qqrep but doesn't return the Q1 matrix.
**             If Q1 is not wanted, qrep will save a significant amount
**             of time and memory usage, especially for large problems.
**
**             Given X[.,E], where E is a permutation vector that permutes
**             the columns of X, there is an orthogonal matrix Q such that
**             Q' * X[.,E] is zero below its diagonal, i.e.,
**
**                   Q'* X[.,E] = [ R ]                           (35)
**                                [ 0 ]
**
**             where R is upper triangular.
**             If we partition
**
**                   Q = [ Q1 Q2 ]                              (36)
**
**             where Q1 has P columns then
**
**                   X[.,E] = Q1 * R                           (37)
**
**             is the qr decomposition of X[.,E].               (38)
**
**             qrep does not return the Q matrix because in most cases it is
**             not required and can be very large.  If you need the Q1 matrix
**             see the GAUSS function qqrep.  If you need the entire Q matrix
**             call qyrep with Y set to a conformable identity
**             matrix.  For most problems Q'* Y, Q1'* Y, or Q * Y, Q1 * Y,
**             for some Y, are required.  For these cases see qtyrep and qyrep.
**
**             qrep allows you to control the pivoting.  For example,
**             suppose that X is a data set with a column of ones in the
**             first column.  If there are linear dependencies among the
**             columns of X, the column of ones for the constant may get
**             pivoted away.  This column can be forced to be included
**             among the linearly independent columns using pvt.
**
**  Globals:    _qrdc
**
**  See Also:   qr, qre, qqrep
*/

proc (2) = qrep(x,pvt);
    local flag,n,p,qraux,work,r,v,k,dif;

    /* check for complex input */
    if iscplx(x);
        if hasimag(x);
            errorlog "ERROR: Not implemented for complex matrices.";
            end;
        else;
            x = real(x);
        endif;
    endif;

    if iscplx(pvt);
        if hasimag(pvt);
            errorlog "ERROR: Not implemented for complex matrices.";
            end;
        else;
            pvt = real(pvt);
        endif;
    endif;

    n = rows(x);
    p = cols(x);
    qraux = zeros(p,1);
    work = qraux;
    x = x';

    flag = 1;

#ifDLLCALL
#else

    if rows(_qrdc) /= 647 or _qrdc[1] $== 0;
        _qrdc = zeros(647,1);
        loadexe _qrdc = qrdc.rex;
    endif;
    callexe _qrdc(x,n,n,p,qraux,pvt,work,flag);

#endif

#ifDLLCALL

    dllcall qrdc(x,n,n,p,qraux,pvt,work,flag);

#endif

    k = minc(n|p);
    dif = abs(n-p);

    if n > p;
        r = trimr(x',0,dif);
        v = seqa(1,1,p);    /* use to create mask */
        r = r .*( v .<= v' );       /* R */
    elseif p > n;
        v = seqa(1,1,p);    /* use to create mask */
        v = v .<= v';
        v = trimr(v,0,dif);
        r = x' .* v ;        /* R */
    else;
        v = seqa(1,1,p);    /* use to create mask */
        v = v .<= v';
        r = x' .* v ;        /* R */
    endif;

    retp(r,pvt);
endp;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -