⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cmlparet.src

📁 没有说明
💻 SRC
字号:
/*
** cmlparet.src  CMLPareto - Constrained Pareto Regression Model for
**                           Duration Data (Censoring Optional)
**
** (C) Copyright 1994-1995  Aptech Systems, Inc.
** All Rights Reserved.
**
** This Software Product is PROPRIETARY SOURCE CODE OF APTECH
** SYSTEMS, INC.    This File Header must accompany all files using
** any portion, in whole or in part, of this Source Code.   In
** addition, the right to create such files is strictly limited by
** Section 2.A. of the GAUSS Applications License Agreement
** accompanying this Software Product.
**
** If you wish to distribute any portion of the proprietary Source
** Code, in whole or in part, you must first obtain written
** permission from Aptech Systems.
**
**-------------------**------------------**-------------------**-----------**
**-------------------**------------------**-------------------**-----------**
**
**  FORMAT     { bg,vc,llik } = cmlpareto(dataset,dep,ind);
**
**  INPUT
**
**      dataset = name of Gauss dataset or name of matrix in memory
**      dep     = dependent variable (duration) name or column number
**      ind     = vector of independent variable names or column numbers
**
**  OUTPUT
**
**      bg    = vector of effect parameters that maximize the likelihood
**             on top of parameter(s) corresponding to vind.
**             PARAMETERIZATION: bg=b|g;
**                 E(Y) = exp(ind*b)
**                 V(Y) = E(Y)*(1+exp(g))
**      vc   = variance-covariance matrix of b
**      llik = value of the log-likelihood at the maximum
**
**  GLOBALSg
**
**  _cmlc_Inference   = CML for constrained maximum likelihood (default)
**                    = BOOT for bootstrapped estimates
**                    = BAYES for Bayesian inference
**
**  _cmlc_Censor     0 = pareto model, no censoring (default).
**             symbol = use this variable from dataset to censor.  Code
**                      each row as 0 if censored or 1 if not.
**            integer = use this column of input matrix to censor. Code
**                      each row as 0 if censored or 1 if not.
**
**  _cmlc_Start   choose method of calculating starting values.
**                      0 = LS (default),
**                      1 = set to vector stored in _cmlc_StartValues,
**                      2 = rndu-0.5,
**                      3 = zeros, or set to vector
**
**  _cmlc_Dispersion   starting value for scalar dispersion parameter.
**                      Default = 3.
**
**  __output    1  =  print output to screen (default),
**              0  =  do not print to screen
**
**  OTHER GLOBALS
**
**      see CML
**
**  EXAMPLE
**      dep = { time };
**      ind = { age, party, unem };
**      dataset = "sample";
**      call cmlpareto(dataset,dep,ind,0);
**
*/
#include cmlcount.ext
#include gauss.ext
#include cml.ext

proc _cmlc_svpar(dataset,dep,ind);
    local res,b0,b1,b,pars;
    if _cmlc_Dispersion == 3;
        _cmlc_Dispersion = .5;
    endif;
    pars = 2;
    if ind/=0;
        pars = pars+rows(ind);
    endif;
    if _cmlc_start==0;
        if ind==0;
            b0 = 0;
        else;
            b0 = -clols(dataset,dep,ind);
        endif;
        res = b0|_cmlc_Dispersion;
    elseif _cmlc_start==1;
        b = _cmlc_startvalues;
        res = b;
        if rows(b)/=pars;
            "b is the wrong size for _cmlc_start\g";
            end;
        endif;
    elseif _cmlc_Start == 2;
        res = rndu(pars,1) - 0.5;
    elseif _cmlc_Start == 3;
        res = zeros(pars,1);
    else;
        res = _cmlc_Start;
        if rows(res) /= pars;
            errorlog "\nERROR:  Wrong number of rows in _cmlc_Start.\n";
            end;
        endif;
    endif;
    retp(res);
endp;

proc _cmlc_lipar(b,dta);
    local y,n,x,ezg,xb,ps,res,resc,aa,exb,dd,z,g,bb;
    y = dta[.,1];
    n = rows(y);
    x = ones(n,1);
    if ((_cmlc_Censor /= 0) and (cols(dta) > 2));
        x = x~dta[.,2:cols(dta)-1];
    elseif (_cmlc_Censor == 0) and (cols(dta) > 1);
        x = x~dta[.,2:cols(dta)];
    endif;
    dd = ones(n,1);
    if _cmlc_Censor/=0;
        dd = dta[.,cols(dta)];
    endif;
    z = 1;          /* use for variance function */

    g = trimr(b,cols(x),0);
    b = trimr(b,0,1);
    xb = x*b;
    exb = exp(xb);
    ezg = exp(g);
    ps = exb./ezg;
    aa = 1+(y./exb)./(1+2*ps);
    if _cmlc_Censor/=0;
        resc = ln(1-(aa^(-2-2*ps)));
    else;
        resc = 1;
    endif;
    res = ln(1+ps)-xb-ln(1+2*ps)-(3+2*ps).*ln(aa);
    res = dd.*res+(1-dd).*resc;
    retp(res);
endp;

proc 3 = cmlpareto(dataset,dep,ind);
    local vars,b,logl,g,vc,se,parnames,st,ret;
    _cml_CovPar = 3;
    _cmlc_fn = dataset;
    if dep $== 0;
        errorlog "\nERROR:  DEP must be variable name or number.\n";
        end;
    endif;
    if type(dataset) /= 13;
         if (maxc(ind) > cols(dataset)) or (dep > cols(dataset));
             if not trapchk(4);
                 errorlog "\nERROR:  If dataset is a matrix, DEP and IND "\
                     "must be column numbers of the input matrix.\n";
                 end;
             endif;
             retp(error(0),error(0),error(0));
         endif;
    endif;
    if (type(dataset)==13) and (type(_cmlc_Censor)==13);
        _cmlc_Censor = indcv(_cmlc_Censor,getname(dataset));
    endif;
    vars = dep;
    if ind /= 0;
        vars = vars|ind;
    endif;

    st = _cmlc_svpar(dataset,dep,ind);
    if __title $== "";
      if _cmlc_Censor/=0;
          __title = "Censored ";
      endif;
      __title = __title$+"Pareto Regression Model of Duration Data";
    endif;
    if _cmlc_Censor/=0;
        vars = vars|_cmlc_Censor;
    endif;
    local infm,inf0,lcInf;
    infm = { CML, BOOT, BAYES };
    inf0 = { 1, 2, 3 };
    LcInf = _cml_check(_cmlc_Inference,1,infm,inf0,1);
    if LcInf == 1;
         { b,logl,g,vc,ret } = cml(dataset,vars,&_cmlc_lipar,st);
    elseif LcInf == 2;
         { b,logl,g,vc,ret } = cmlboot(dataset,vars,&_cmlc_lipar,st);
    elseif LcInf == 3;
        { b,logl,g,vc,ret } = cmlbayes(dataset,vars,&_cmlc_lipar,st);
    endif;
    if ret /= 0;
        errorlog "ERROR: Model estimation failed.";
        end;
    endif;
    if type(dataset)==13;
        vars = "beta0";
        if ind/=0;
            vars = vars|ind;
        endif;
        vars = vars|"gamma";
    else;
        vars = "beta0";
        if ind/=0;
            vars = vars|
            ((0 $+ "Col." $+ zeros(rows(ind),1))$+_cmlc_ftosm(ind,2));
        endif;
        vars = vars|"gamma";
    endif;
    _cmlc_vr = vars;
    _cmlc_dp = dep;
    ndpclex;
    retp(b,vc,logl*_cml_NumObs);
endp;


⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -