📄 eigch.src
字号:
/*
** eigch.src - Complex hermitian eigenvalues/eigenvectors.
** (C) Copyright 1988-1998 by Aptech Systems, Inc.
** All Rights Reserved.
**
** This Software Product is PROPRIETARY SOURCE CODE OF APTECH
** SYSTEMS, INC. This File Header must accompany all files using
** any portion, in whole or in part, of this Source Code. In
** addition, the right to create such files is strictly limited by
** Section 2.A. of the GAUSS Applications License Agreement
** accompanying this Software Product.
**
** If you wish to distribute any portion of the proprietary Source
** Code, in whole or in part, you must first obtain written
** permission from Aptech Systems.
**
** These functions require GAUSS-386.
**
** Format Line
** ==============================================================
** va = EIGCH(xr,xi); 28
** { valr,vali,vecr,veci } = EIGCH2(xr,xi); 81
*/
#include eig.ext
/*
**> eigch
**
** Purpose: To compute the eigenvalues of a complex, hermitian matrix.
**
** Format: va = eigch(xr,xi);
**
** Input: xr NxN matrix, real part.
**
** xi NxN matrix, imaginary part.
**
** Output: va Nx1 vector, real part of eigenvalues.
**
** _eigerr global scalar, if all the eigenvalues can
** be determined _eigerr = 0, otherwise _eigerr is set
** to the index of the eigenvalue that failed. The
** eigenvalues for indices 1 to _eigerr-1 should be
** correct.
**
** Remarks: Error handling is controlled with the low bit of the
** trap flag.
**
** TRAP 0 set _eigerr and terminate with message.
**
** TRAP 1 set _eigerr and continue execution.
**
** The eigenvalues are in ascending order. The eigenvalues for
** a complex hermitian matrix are always real so this procedure
** returns only one vector.
**
** This function is provided for backward compatibility
** with previous versions of GAUSS. It uses an
** intrinsic function eigh. If portability to the 16-bit
** environment is not an issue and you have the complex
** version of GAUSS, use the intrinsic function directly.
** It is faster and more memory efficient.
**
** Globals: _eigerr
**
** See Also: eigch2, eigcg, eigrg, eigrs, complex
*/
proc eigch(xr,xi);
xr = eigh(complex(xr,xi));
if scalerr(xr[1]);
_eigerr = scalerr(xr[1]);
xr[1] = 0;
else;
_eigerr = 0;
endif;
retp(xr);
endp;
/*
**> eigch2
**
** Purpose: To compute eigenvalues and eigenvectors of a complex,
** hermitian matrix.
**
** Format: { var,vai,ver,vei } = eigch2(xr,xi);
**
** Input: xr NxN matrix, real part.
**
** xi NxN matrix, imaginary part.
**
** Output: var Nx1 vector, real part of eigenvalues.
**
** vai Nx1 vector, imaginary part of eigenvalues.
**
** ver NxN matrix, real part of eigenvectors.
**
** vei NxN matrix, imaginary part of eigenvectors.
**
** _eigerr global scalar, if all the eigenvalues can
** be determined _eigerr = 0, otherwise _eigerr is set
** to the index of the eigenvalue that failed. The
** eigenvalues for indices 1 to _eigerr-1 should be
** correct. The eigenvectors are not computed.
**
** Remarks: Error handling is controlled with the low bit of the
** trap flag.
**
** TRAP 0 set _eigerr and terminate with message
**
** TRAP 1 set _eigerr and continue execution
**
** The eigenvalues are in ascending order. The eigenvalues
** of a complex hermitian matrix are always real. This
** procedure returns a vector of zeros for the imaginary part
** of the eigenvalues so the syntax is consistent with other
** eigxx procedure calls. The columns of ver and vei contain
** the real and imaginary eigenvectors of x in the same order
** as the eigenvalues. The eigenvectors are orthonormal.
**
** This function is provided for backward compatibility
** with previous versions of GAUSS. It uses an
** intrinsic function eigh. If portability to the 16-bit
** environment is not an issue and you have the complex
** version of GAUSS, use the intrinsic function directly.
** It is faster and more memory efficient.
**
** Globals: _eigerr
**
** See Also: eigch, eigcg, eigrg, eigrs
*/
proc (4) = eigch2(xr,xi);
local er,ei;
{ xr,xi,er,ei } = cmsplit2(eighv(complex(xr,xi)));
if scalerr(xr[1]);
_eigerr = scalerr(xr[1]);
xr[1] = 0;
else;
_eigerr = 0;
endif;
retp(xr,xi,er,ei);
endp;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -