⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 qqr.src

📁 没有说明
💻 SRC
📖 第 1 页 / 共 2 页
字号:
/*
** qqr.src - Procedures related to the QR decomposition.
** (C) Copyright 1988-1998 by Aptech Systems, Inc.
** All Rights Reserved.
**
** This Software Product is PROPRIETARY SOURCE CODE OF APTECH
** SYSTEMS, INC.    This File Header must accompany all files using
** any portion, in whole or in part, of this Source Code.   In
** addition, the right to create such files is strictly limited by
** Section 2.A. of the GAUSS Applications License Agreement
** accompanying this Software Product.
**
** If you wish to distribute any portion of the proprietary Source
** Code, in whole or in part, you must first obtain written
** permission from Aptech Systems.
**
** These functions require GAUSS 3.0.
**
**  Format                   Purpose                                 Line
** -----------------------------------------------------------------------
** { q,r } = QQR(x);         QR decomposition                          30
** { q,r,e } = QQRE(x);      QR decomposition with pivoting           206
** { q,r,e } = QQREP(x,pvt); QR decomposition with pivoting control   400
** y = ORTH(x);              Orthogonalization                        576
*/

#include qr.ext

/*
**> qqr
**
**  Purpose:    Computes the orthogonal-triangular (QR)
**              decomposition of a matrix X, such that:
**
**                          X = Q1*R.                                 (1)
**
**  Format:     { Q1,R } = qqr(X);
**
**  Input:      X     NxP matrix.
**
**  Output:     Q1    NxK unitary matrix, K = min(N,P).
**
**              R     LxP upper triangular matrix, L = min(N,P).
**
**  Remarks:   Given X, there is an orthogonal matrix Q such that Q' * X
**             is zero below its diagonal, i.e.,
**
**                   Q'* X =  [ R ]                         (1a)
**                            [ 0 ]
**
**             where R is upper triangular.  If we partition
**
**                   Q = [ Q1 Q2 ]                           (2)
**
**             where Q1 has P columns then
**
**                   X = Q1 * R                              (3)
**
**             is the QR decomposition of X.  If X has linearly
**             independent columns, R is also the Cholesky factorization of
**             the moment matrix of X, i.e., of X'* X.
**
**             If you want only the R matrix, see QR.  Not computing Q1
**             can produce significant improvements in computing time and
**             memory usage.
**
**             An unpivoted R matrix can also be generated using cholup:
**
**                   r = cholup(zeros(cols(x),cols(x)),x);
**
**             For linear equation or least squares problems, which require Q2
**             for computing residuals and residual sums of squares, see olsqr,
**             and QTYR.
**
**             For most problems an explicit copy of Q1 or Q2 is not required.
**             Instead one of the following, Q'* Y, Q * Y, Q1'* Y, Q1 * Y,
**             Q2'* Y, or Q2 * Y, for some Y, is required.  These cases are
**             all handled by QTYR and QYR.  These functions are available
**             because Q and Q1 are typically very large  matrices while
**             their products with y are more manageable.
**
**             If N < P the factorization assumes the form:
**
**                   Q'* X = [ R1  R2 ]                                   (4)
**
**             where R1 is a PxP upper triangular matrix and R2 is Px(N-P).
**             Thus Q is a PxP matrix and R is a PxN matrix containing R1 and
**             R2.  This type of factorization is useful for the solution of
**             underdetermined systems.  However,  (unless the linearly
**             independent columns happen to be the initial rows) such an
**             analysis also requires pivoting (see qre and qrep).
**
**
**
**  Globals:    _qrdc, _qrsl
**
**  See Also:  qre, qrep, qtyr, qtyre, qtyrep, qyr, qyre, qyrep, olsqr
**
*/

proc (2) = qqr(x);
    local flag,n,p,qraux,work,pvt,job,dum,info,qy,r,v,q,i,y,k,dif;

    /* check for complex input */
    if iscplx(x);
        if hasimag(x);
            errorlog "ERROR: Not implemented for complex matrices.";
            end;
        else;
            x = real(x);
        endif;
    endif;

    n = rows(x);
    p = cols(x);
    qraux = zeros(p,1);
    work = qraux;
    pvt = qraux;

    dum = 0;
    info = 0;
    job = 10000;    /* compute qy only */
    qy = zeros(n,1);
    x = x';

    flag = 0;

#ifDLLCALL
#else

    if rows(_qrdc) /= 647 or _qrdc[1] $== 0;
        _qrdc = zeros(647,1);
        loadexe _qrdc = qrdc.rex;
    endif;
    callexe _qrdc(x,n,n,p,qraux,pvt,work,flag);

#endif

#ifDLLCALL

    dllcall qrdc(x,n,n,p,qraux,pvt,work,flag);

#endif

    k = minc(n|p);
    dif = abs(n-p);

    if n > p;
        r = trimr(x',0,dif);
        v = seqa(1,1,p);    /* use to create mask */
        r = r .*( v .<= v' );       /* R */
        clear v;
        q = zeros(n,p);     /* initialize space for q */
    elseif p > n;
        v = seqa(1,1,p);    /* use to create mask */
        v = v .<= v';
        v = trimr(v,0,dif);
        r = x' .* v ;        /* R */
        clear v;
        q = zeros(n,n);     /* initialize space for q */
    else;
        v = seqa(1,1,p);    /* use to create mask */
        v = v .<= v';
        r = x' .* v ;        /* R */
        clear v;
        q = zeros(n,n);     /* initialize space for q */
    endif;

    y = 1~zeros(1,n);


#ifDLLCALL
#else

    if rows(_qrsl) /= 455 or _qrsl[1] $== 0;
        _qrsl = zeros(455,1);
        loadexe _qrsl = qrsl.rex;
    endif;

#endif

    i = 1;
    do until i > k;         /* Compute the Q of QR fame */

#ifDLLCALL
#else

        callexe _qrsl(x,n,n,k,qraux,y,qy,dum,dum,dum,dum,job,info);

#endif

#ifDLLCALL

        dllcall qrsl(x,n,n,k,qraux,y,qy,dum,dum,dum,dum,job,info);

#endif

        q[.,i] = qy;
        y = shiftr(y,1,0);          /* shift the 1 down 1 row */
        i = i + 1;
    endo;
    retp(q,r);
endp;

/*
**> qqre
**
**  Purpose:    Computes the orthogonal-triangular (QR)
**             decomposition of a matrix X, such that:
**
**                         X[.,E] = Q1*R.                     (5)
**
**  Format:     { Q1,R,E } = qqre(X);
**
**  Input:       X    NxP matrix.
**
**  Output:      Q1   NxK unitary matrix, K = min(N,P).
**
**               R    LxP upper triangular matrix, L = min(N,P).
**
**               E    Px1 permutation vector.
**
**  Remarks:   Given X[.,E], where E is a permutation vector that permutes
**             the columns of X, there is an orthogonal matrix Q such that
**             Q' * X[.,E] is zero below its diagonal, i.e.,
**
**                   Q'* X[.,E] = [ R ]                           (6)
**                                [ 0 ]
**
**             where R is upper triangular.
**             If we partition
**
**                   Q = [ Q1 Q2 ]                                (7)
**
**             where Q1 has P columns then
**
**                    X[.,E] = Q1 * R                             (8)
**
**             is the QR decomposition of X[.,E].
**
**             If you want only the R matrix, see qre.  Not computing Q1
**             can produce significant improvements in computing time and
**             memory usage.
**
**             If X has rank P, then the columns of X will
**             not be permuted.  If X has rank M < P, then the M linearly
**             independent columns are permuted to the front of X
**             by E.  Partition the permuted X in the following way:
**
**                    X[.,E] = [ X1 X2 ]                             (9)
**
**             where X1 is NxM and X2 is Nx(P-M).  Further partition R
**             in the following way:
**
**                   R = [ R11 R12 ]                                 (10)
**                       [  0   0  ]
**
**             where R11 is MxM and R12 is Mx(P-M).  Then
**
**                   A = inv(R11)*R12                       (11)
**
**             and
**
**                   X2 = X1*A.                             (12)
**
**             that is, A is an Mx(P-N) matrix defining the linear
**             combinations of X2 with respect to X1.
**
**             If N < P the factorization assumes the form:
**
**                   Q'* X = [ R1  R2 ]                   (13)
**
**             where R1 is a PxP upper triangular matrix and R2 is Px(N-P).
**             Thus Q is a PxP matrix and R is a PxN matrix containing R1 and
**             R2.  This type of factorization is useful for the solution of
**             underdetermined systems.  For the solution of
**
**                   X[.,E] b = Y                        (13a)
**
**             it can be shown that
**
**                  b = qrsol(Q'Y,R1) | zeros(N-P,1);
**
**             The explicit formation here of Q, which can be a very large
**             matrix, can be avoided by using the GAUSS function qtyre.
**
**             For further discussion of qr factorizations see the documentation
**             for the GAUSS function qqr.
**
**  Globals:    _qrdc, _qrsl
**
**  See Also:   qqr, qtyre, olsqr
*/

proc (3) = qqre(x);
    local flag,n,p,qraux,work,pvt,job,dum,info,qy,r,v,q,i,y,k,dif;

    /* check for complex input */
    if iscplx(x);
        if hasimag(x);
            errorlog "ERROR: Not implemented for complex matrices.";
            end;
        else;
            x = real(x);
        endif;
    endif;

    n = rows(x);
    p = cols(x);
    qraux = zeros(p,1);
    work = qraux;
    pvt = qraux;

    dum = 0;
    info = 0;
    job = 10000;    /* compute qy only */
    qy = zeros(n,1);
    x = x';

    flag = 1;

#ifDLLCALL
#else

    if rows(_qrdc) /= 647 or _qrdc[1] $== 0;
        _qrdc = zeros(647,1);
        loadexe _qrdc = qrdc.rex;
    endif;
    callexe _qrdc(x,n,n,p,qraux,pvt,work,flag);

#endif

#ifDLLCALL

    dllcall qrdc(x,n,n,p,qraux,pvt,work,flag);

#endif

    k = minc(n|p);
    dif = abs(n-p);

    if n > p;
        r = trimr(x',0,dif);
        v = seqa(1,1,p);    /* use to create mask */
        r = r .*( v .<= v' );       /* R */
        clear v;
        q = zeros(n,p);     /* initialize space for q */
    elseif p > n;
        v = seqa(1,1,p);    /* use to create mask */
        v = v .<= v';
        v = trimr(v,0,dif);
        r = x' .* v ;        /* R */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -