📄 backprop.cpp
字号:
/* ****************************************************************** * backprop.cpp ****************************************************************** */#include "StdAfx.h"#include <stdio.h>#include "backprop.h"#include <math.h>#include <stdlib.h>#define ABS(x) (((x) > 0.0) ? (x) : (-(x)))/* 宏定义:快速拷贝 */#define fastcopy(to,from,len)\{\ register char *_to,*_from;\ register int _i,_l;\ _to = (char *)(to);\ _from = (char *)(from);\ _l = (len);\ for (_i = 0; _i < _l; _i++) *_to++ = *_from++;\}/*** 返回0-1的双精度随机数 ***/double drnd(){ return ((double) rand() / (double) BIGRND);}/*** 返回-1.0到1.0之间的双精度随机数 ***/double dpn1(){ return ((drnd() * 2.0) - 1.0);}/*** 作用函数,目前是S型函数 ***/double squash(double x){ return (1.0 / (1.0 + exp(-x)));}/*** 申请1维双精度实数数组 ***/double *alloc_1d_dbl(int n){ double *new1; new1 = (double *) malloc ((unsigned) (n * sizeof (double))); if (new1 == NULL) { printf("ALLOC_1D_DBL: Couldn't allocate array of doubles\n"); return (NULL); } return (new1);}/*** 申请2维双精度实数数组 ***/double **alloc_2d_dbl(int m, int n){ int i; double **new1; new1 = (double **) malloc ((unsigned) (m * sizeof (double *))); if (new1 == NULL) { printf("ALLOC_2D_DBL: Couldn't allocate array of dbl ptrs\n"); return (NULL); } for (i = 0; i < m; i++) { new1[i] = alloc_1d_dbl(n); } return (new1);}/*** 随机初始化权值 ***/void bpnn_randomize_weights(double **w, int m, int n){ int i, j; for (i = 0; i <= m; i++) { for (j = 0; j <= n; j++) { w[i][j] = dpn1(); } }}/*** 0初始化权值 ***/void bpnn_zero_weights(double **w, int m, int n){ int i, j; for (i = 0; i <= m; i++) { for (j = 0; j <= n; j++) { w[i][j] = 0.0; } }}/*** 设置随机数种子 ***/void bpnn_initialize(int seed){ printf("Random number generator seed: %d\n", seed); srand(seed);}/*** 创建BP网络 ***/BPNN *bpnn_internal_create(int n_in, int n_hidden, int n_out){ BPNN *newnet; newnet = (BPNN *) malloc (sizeof (BPNN)); if (newnet == NULL) { printf("BPNN_CREATE: Couldn't allocate neural network\n"); return (NULL); } newnet->input_n = n_in; newnet->hidden_n = n_hidden; newnet->output_n = n_out; newnet->input_units = alloc_1d_dbl(n_in + 1); newnet->hidden_units = alloc_1d_dbl(n_hidden + 1); newnet->output_units = alloc_1d_dbl(n_out + 1); newnet->hidden_delta = alloc_1d_dbl(n_hidden + 1); newnet->output_delta = alloc_1d_dbl(n_out + 1); newnet->target = alloc_1d_dbl(n_out + 1); newnet->input_weights = alloc_2d_dbl(n_in + 1, n_hidden + 1); newnet->hidden_weights = alloc_2d_dbl(n_hidden + 1, n_out + 1); newnet->input_prev_weights = alloc_2d_dbl(n_in + 1, n_hidden + 1); newnet->hidden_prev_weights = alloc_2d_dbl(n_hidden + 1, n_out + 1); return (newnet);}/* 释放BP网络所占地内存空间 */void bpnn_free(BPNN *net){ int n1, n2, i; n1 = net->input_n; n2 = net->hidden_n; free((char *) net->input_units); free((char *) net->hidden_units); free((char *) net->output_units); free((char *) net->hidden_delta); free((char *) net->output_delta); free((char *) net->target); for (i = 0; i <= n1; i++) { free((char *) net->input_weights[i]); free((char *) net->input_prev_weights[i]); } free((char *) net->input_weights); free((char *) net->input_prev_weights); for (i = 0; i <= n2; i++) { free((char *) net->hidden_weights[i]); free((char *) net->hidden_prev_weights[i]); } free((char *) net->hidden_weights); free((char *) net->hidden_prev_weights); free((char *) net);}/*** 创建一个BP网络,并初始化权值***/BPNN *bpnn_create(int n_in, int n_hidden, int n_out){ BPNN *newnet; newnet = bpnn_internal_create(n_in, n_hidden, n_out);#ifdef INITZERO bpnn_zero_weights(newnet->input_weights, n_in, n_hidden);#else bpnn_randomize_weights(newnet->input_weights, n_in, n_hidden);#endif bpnn_randomize_weights(newnet->hidden_weights, n_hidden, n_out); bpnn_zero_weights(newnet->input_prev_weights, n_in, n_hidden); bpnn_zero_weights(newnet->hidden_prev_weights, n_hidden, n_out); return (newnet);}void bpnn_layerforward(double *l1, double *l2, double **conn, int n1, int n2){ double sum; int j, k; /*** 设置阈值 ***/ l1[0] = 1.0; /*** 对于第二层的每个神经元 ***/ for (j = 1; j <= n2; j++) { /*** 计算输入的加权总和 ***/ sum = 0.0; for (k = 0; k <= n1; k++) { sum += conn[k][j] * l1[k]; } l2[j] = squash(sum); }}/* 输出误差 */void bpnn_output_error(double *delta, double *target, double *output, int nj, double *err){ int j; double o, t, errsum; errsum = 0.0; for (j = 1; j <= nj; j++) { o = output[j]; t = target[j]; delta[j] = o * (1.0 - o) * (t - o); errsum += ABS(delta[j]); } *err = errsum;}/* 隐含层误差 */void bpnn_hidden_error(double* delta_h, int nh, double *delta_o, int no, double **who, double *hidden, double *err){ int j, k; double h, sum, errsum; errsum = 0.0; for (j = 1; j <= nh; j++) { h = hidden[j]; sum = 0.0; for (k = 1; k <= no; k++) { sum += delta_o[k] * who[j][k]; } delta_h[j] = h * (1.0 - h) * sum; errsum += ABS(delta_h[j]); } *err = errsum;}/* 调整权值 */void bpnn_adjust_weights(double *delta, int ndelta, double *ly, int nly, double** w, double **oldw, double eta, double momentum){ double new_dw; int k, j; ly[0] = 1.0; for (j = 1; j <= ndelta; j++) { for (k = 0; k <= nly; k++) { new_dw = ((eta * delta[j] * ly[k]) + (momentum * oldw[k][j])); w[k][j] += new_dw; oldw[k][j] = new_dw; } }}/* 进行前向运算 */void bpnn_feedforward(BPNN* net){ int in, hid, out; in = net->input_n; hid = net->hidden_n; out = net->output_n; /*** Feed forward input activations. ***/ bpnn_layerforward(net->input_units, net->hidden_units, net->input_weights, in, hid); bpnn_layerforward(net->hidden_units, net->output_units, net->hidden_weights, hid, out);}/* 训练BP网络 */void bpnn_train(BPNN *net, double eta, double momentum, double *eo, double *eh){ int in, hid, out; double out_err, hid_err; in = net->input_n; hid = net->hidden_n; out = net->output_n; /*** 前向输入激活 ***/ bpnn_layerforward(net->input_units, net->hidden_units, net->input_weights, in, hid); bpnn_layerforward(net->hidden_units, net->output_units, net->hidden_weights, hid, out); /*** 计算隐含层和输出层误差 ***/ bpnn_output_error(net->output_delta, net->target, net->output_units, out, &out_err); bpnn_hidden_error(net->hidden_delta, hid, net->output_delta, out, net->hidden_weights, net->hidden_units, &hid_err); *eo = out_err; *eh = hid_err; /*** 调整输入层和隐含层权值 ***/ bpnn_adjust_weights(net->output_delta, out, net->hidden_units, hid, net->hidden_weights, net->hidden_prev_weights, eta, momentum); bpnn_adjust_weights(net->hidden_delta, hid, net->input_units, in, net->input_weights, net->input_prev_weights, eta, momentum);}/* 保存BP网络 */void bpnn_save(BPNN *net, char *filename){ int n1, n2, n3, i, j, memcnt; double dvalue, **w; char *mem; FILE *fd; if ((fd = fopen(filename, "w")) == NULL) { printf("BPNN_SAVE: Cannot create '%s'\n", filename); return; } n1 = net->input_n; n2 = net->hidden_n; n3 = net->output_n; printf("Saving %dx%dx%d network to '%s'\n", n1, n2, n3, filename); fflush(stdout); fwrite((char *) &n1, sizeof(int), 1, fd); fwrite((char *) &n2, sizeof(int), 1, fd); fwrite((char *) &n3, sizeof(int), 1, fd); memcnt = 0; w = net->input_weights; mem = (char *) malloc ((unsigned) ((n1+1) * (n2+1) * sizeof(double))); for (i = 0; i <= n1; i++) { for (j = 0; j <= n2; j++) { dvalue = w[i][j]; fastcopy(&mem[memcnt], &dvalue, sizeof(double)); memcnt += sizeof(double); } } fwrite(mem, (n1+1) * (n2+1) * sizeof(double), 1, fd); free(mem); memcnt = 0; w = net->hidden_weights; mem = (char *) malloc ((unsigned) ((n2+1) * (n3+1) * sizeof(double))); for (i = 0; i <= n2; i++) { for (j = 0; j <= n3; j++) { dvalue = w[i][j]; fastcopy(&mem[memcnt], &dvalue, sizeof(double)); memcnt += sizeof(double); } } fwrite(mem, (n2+1) * (n3+1) * sizeof(double), 1, fd); free(mem); fclose(fd); return;}/* 从文件中读取BP网络 */BPNN *bpnn_read(char *filename){ char *mem; BPNN *new1; int n1, n2, n3, i, j, memcnt; FILE *fd; if ((fd = fopen(filename, "r")) == NULL) { return (NULL); } printf("Reading '%s'\n", filename); fflush(stdout); fread((char *) &n1, sizeof(int), 1, fd); fread((char *) &n2, sizeof(int), 1, fd); fread((char *) &n3, sizeof(int), 1, fd); new1 = bpnn_internal_create(n1, n2, n3); printf("'%s' contains a %dx%dx%d network\n", filename, n1, n2, n3); printf("Reading input weights..."); fflush(stdout); memcnt = 0; mem = (char *) malloc ((unsigned) ((n1+1) * (n2+1) * sizeof(double))); fread( mem, (n1+1) * (n2+1) * sizeof(double), 1, fd); for (i = 0; i <= n1; i++) { for (j = 0; j <= n2; j++) { fastcopy(&(new1->input_weights[i][j]), &mem[memcnt], sizeof(double)); memcnt += sizeof(double); } } free(mem); printf("Done\nReading hidden weights..."); fflush(stdout); memcnt = 0; mem = (char *) malloc ((unsigned) ((n2+1) * (n3+1) * sizeof(double))); fread( mem, (n2+1) * (n3+1) * sizeof(double), 1, fd); for (i = 0; i <= n2; i++) { for (j = 0; j <= n3; j++) { fastcopy(&(new1->hidden_weights[i][j]), &mem[memcnt], sizeof(double)); memcnt += sizeof(double); } } free(mem); fclose(fd); printf("Done\n"); fflush(stdout); bpnn_zero_weights(new1->input_prev_weights, n1, n2); bpnn_zero_weights(new1->hidden_prev_weights, n2, n3); return (new1);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -