📄 fsk.m
字号:
% 2fsk.m
%
% Simulation program to build 2FSK
% All of the programs had been built successfully in MATLAB 6.5
%************************ Preparation part *****************************
NUM = 512; % The number of FFT point
sr=1000000.0; % Symbol rate
fc = 1000000; % The frequency of the carrier
fs = 32000000; % The sample rate
ml=1; % Number of modulation levels
br=sr.*ml; % Bit rate (=symbol rate in this case)
nd=NUM*fc/fs; % The number of symbols
n =fc/sr; % The number of the carrier in a symbol
ebno=15; % Eb/N0
IPOINT=32; % Number of oversamples
Ts = 1/sr; % The period of the sourse signal
t=0:1/fs:1/fc*nd*n-1/fs; % The sample point in one carrier period
fcos = cos(2*pi*fc*t); % cosin carrier
kf=800000;
data5(1)=0;
%*********************** Filter initialization **************************
irfn=21; % Number of filter taps
alfs=0.33; % Rolloff factor
[xh]=hrollfcoef(irfn,IPOINT,sr,alfs,1); % Transmitter filter coefficients
%*********************** Data generation **********************************
data=rand(1,nd)>0.5; % rand: built in function
%fprintf('%d',data);
%*********************** 2fsk modulation **********************************
data1=data.*2-1;
%[data2]=oversample(data1,nd,IPOINT);
[data2]=oversample(data,nd,IPOINT);%<<<<<<<<<<<<<<<<<<======================
data3=conv(data2,xh); %(conv: build in function)
data4=data3(irfn*IPOINT/2-1:NUM+irfn*IPOINT/2-2); % date4 is the baseband singal of 2fsk
data4=data4+0.3; % <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<==================================
data5(1)=data4(1)*(1/fs);
for i=1:length(data4)-1;
data5(i+1)=data5(i)+data4(i)*(1/fs);
end
modulation = cos(2*pi*fc*t+2*pi*kf*data5); % The modulation is the 2fsk singal
%*********************** Attenuation Calculation **************************
spow=sum(modulation.*modulation)/nd;
attn=0.5*spow*sr/br*10.^(-ebno/10);
attn=sqrt(attn);
%*********************** Add White Gaussian Noise(AWGN) *******************
inoise=randn(1,length(modulation)).*attn;
modulation=modulation+inoise;
fprintf('%f,0,\n',modulation);
%**************************fing the ampltude and phade***************************
mod_hilb=hilbert(modulation);
x=real(mod_hilb);
y=imag(mod_hilb);
z=sqrt(modulation.*modulation+y.*y) ; % z is the amplitude
%fprintf('%f\n',z);
z_ph1=y./x;
for i=1:NUM
if (y(i)>0)&(x(i)>0)
z_ph(i)=atan(z_ph1(i));
elseif (y(i)>0)&(x(i)<0)
z_ph(i)=pi+atan(z_ph1(i));
elseif (y(i)<0)&(x(i)<0)
z_ph(i)=pi+atan(z_ph1(i));
elseif (y(i)<0)&(x(i)>0)
z_ph(i)=2*pi+atan(z_ph1(i));
elseif (y(i)>0)&(x(i)==0)
z_ph(i)=0.5*pi;
elseif (y(i)<0)&(x(i)==0)
z_ph(i)=1.5*pi;
end % z_ph is the phase
end
%*************************compute the rmax********************************
a=sum(z);
ma=a/NUM;
for i=1:length(z)
an(i)=z(i)./ma;
an(i)=an(i)-1;
an(i)=an(i)*an(i);
end
y1=fft(an,NUM);
yxk=abs(y1(1:NUM/2));
for i=1:NUM/2
for j=1:NUM/2-i
t=yxk(j);yxk(j)=yxk(j+1);yxk(j+1)=t;
end
end
max=yxk(NUM/2)/NUM;
%fprintf('\nmax=%f',max);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -