⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 seed.m

📁 Basic projection pursuit algorithm demonstrated on 2 sound signals。 include: atutorialintroduction
💻 M
字号:
% Basic projection pursuit algorithm demonstrated on 2 sound signals,
% only one signal is extracted here.
% The default value of each parameter is given in [] brackets.

% [0] Set to 1 to hear signals.
listen=1; % set to 1 if have audio. 

% [1] Set random number seed.
seed=99; rand('seed',seed); 	randn('seed',seed);

% [2] M = number of source signals and signal mixtures.
M = 2; 		
% [1e4] N = number of data points per signal.
N = 1e4; 	

% Load data, each of M=2 columns contains a different source signal.
% Each column has N rows (signal values). 

% Load standard matlab sounds (from MatLab's datafun directory) 
% Set variance of each source to unity.
load chirp; s1=y(1:N); s1=s1-mean(s1); s1=s1/std(s1);
load laughter;  s2=y(1:N); s2=s2-mean(s2); s2=s2/std(s2);

% Combine sources into vector variable s.
s=[s1,s2];

% Make mixing matrix.
A=randn(M,M);

% Listen to source signals ...
% [10000] Fs Sample rate of sound.
Fs=10000;

if listen	soundsc(x(:,1),Fs); soundsc(x(:,2),Fs); end;
% Plot histogram of each source signal - 
% this approximates pdf of each source.
figure(3);hist(s(:,1),50); drawnow;
figure(4);hist(s(:,2),50); drawnow;

% Make M mixures x from M source signals s.
x = s*A;

% Listen to signal mixtures signals ...

if listen	soundsc(x(:,1),Fs); soundsc(x(:,2),Fs); end;
% Sphere mixtures using SVD.
[U D V]=svd(x,0);
% Set new x to be left singular vectors of old x.
z=U;
% Each eigenvector has unit length, 
% but we want unit variance mixtures ...
z=z./repmat(std(z,1),N,1);

% Initialise unmixing vector to random vector ... 
w = randn(1,M);
% ... with unit length.
w=w/norm(w);

% Initialise y, the estimated source signal.
y = z*w';

% Print out initial correlations between 
% each estimated source y and every source signal s.
fprintf('Initial correlations of source and extracted signals\n');
%rinitial=abs(r(M+1:2*M,1:M))
r1=corrcoef([y s1]); r2=corrcoef([y s2]);
rinitial=abs([r1(1,2) r2(1,2)])

maxiter=100; 	% [100] Maximum number of iterations.
eta=2e-2;		% [1e-2 /2] Step size for gradient ascent.

% Make array hs to store values of function and gradient magnitude.
Ks=zeros(maxiter,1);
gs=zeros(maxiter,1);

% Begin gradient ascent on K ...
% Define known optimal weight vector ...
wopt=[-0.6125    0.7904];
for iter=1:maxiter
	% Get estimated source signal, y.
	y = z*w'; 

	% Get estimated kurtosis.
	K = mean(y.^4)-3; 
	
	% Find gradient @K/@w ...
	y3=y.^3;
	yy3 = repmat(y3,1,2);
	g = mean( yy3.*z );

	% Update w to increase K ... 
	w = w + eta*g;
	% Set length of w to unity ...
	w = w/norm(w);
	% Record h and angle between wopt and gradient ...
    Ks(iter)=K; gs(iter)=subspace(g',wopt');
end;

% Plot change in K and gradient/wopt angle during optimisation.
figure(1);plot(Ks,'k');
title('Function values - Kurtosis');
xlabel('Iteration');ylabel('K(y)');
figure(2);plot(gs,'k');
title('Angle \alpha Between Gradient g and Final Weight Vector w');
xlabel('Iteration');ylabel('\alpha');

% Print out final correlations ...
r=corrcoef([y s]);
fprintf('FInal correlations between source and extracted signals ...\n');
r1=corrcoef([y s1]);
r2=corrcoef([y s2]);
rfinal=abs([r1(1,2) r2(1,2)])

% Listen to extracted signal ...
if listen	soundsc(y,Fs);	end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -