📄 genetic.cpp
字号:
/****************************************************************
* Implementation of Class Genetic
***************************************************************/
#include "Genetic.h"
#include "Simulation.h"
#include "Troll.h"
#include <stdlib.h>
#include <iostream.h>
#include <iomanip.h>
/*****************************************************************
* Populating the world with trolls...
****************************************************************/
void Genetic::MakeRandomIndividual( int which )
{
Population[ which ].DNA.Priorities[ EATING_PRIORITY ] = (double) ( rand() % 10000 ) / 10000.0;
Population[ which ].DNA.Priorities[ KILLING_PRIORITY ] = (double) ( rand() % 10000 ) / 10000.0;
Population[ which ].DNA.Priorities[ FLEEING_PRIORITY ] = (double) ( rand() % 10000 ) / 10000.0;
Population[ which ].DNA.Priorities[ EXPLORING_PRIORITY ] = (double) ( rand() % 10000 ) / 10000.0;
Population[ which ].DNA.Priorities[ HEALING_PRIORITY ] = (double) ( rand() % 10000 ) / 10000.0;
}
void Genetic::CreateInitialPopulation()
{
for( int i = 0; i < GA_POPULATION_SIZE; i++ )
{
MakeRandomIndividual( i );
}
}
/*****************************************************************
* The evolutionary process
****************************************************************/
// The mothership method for the whole process
void Genetic::RunEvolution()
{
// Set up the gene pool
CreateInitialPopulation();
theSim.BuildTestCases();
// And iterate the testing process over N generations
for( int i = 0; i < GA_GENERATIONS; i++ )
{
RunGeneration();
ReportGenerationResults( i );
if( i < GA_GENERATIONS - 1 )
BegetNextGeneration();
}
}
// Helper function to classify individuals based on performance
int RankIndividuals( const void * a, const void * b )
{
Individual * ia = ( Individual * ) a;
Individual * ib = ( Individual * ) b;
if( ia->Performance > ib->Performance )
return -1;
else
return 1;
}
// Test an entire population of trolls
void Genetic::RunGeneration()
{
for( int i = 0; i < GA_POPULATION_SIZE; i++ )
{
// Place the troll in the game world
Troll theTroll( Population[ i ].DNA, rand() % WORLD_GRID_SIZE, rand() % WORLD_GRID_SIZE );
Entity::AttachTroll( theTroll );
// Run the simulation with this troll and extract the results
Population[ i ].Performance = theSim.RunSim( theTroll );
Population[ i ].StatsSheepEaten = theTroll.StatsSheepEaten;
Population[ i ].StatsKnightsKilled = theTroll.StatsKnightsKilled;
Population[ i ].StatsDamageTaken = theTroll.StatsDamageTaken;
Population[ i ].StatsTimeAlive = theTroll.StatsTimeAlive;
Population[ i ].StatsTimeCaptive = theTroll.StatsTimeCaptive;
}
// And classify the population
qsort( Population, GA_POPULATION_SIZE, sizeof( Individual ), RankIndividuals );
}
// How do we generate a new population according to the results of
// their parents?
// WARNING: THIS FUNCTION WILL NOT WORK IF POPULATION SIZE IS LESS
// THAN 90 INDIVIDUALS. For smaller populations, you will have to
// change the parenting rules.
void Genetic::BegetNextGeneration()
{
// First, we keep the top 20 individuals from the last
// generation, without change.
// Then, we make 42 new individuals by mating the top
// 7 performers, giving the higher-ranked individuals more
// chances to reproduce. The following chunk of code only
// selects the parents; mating occurs later.
int currentIndex = 20;
for( int higher = 0; higher < 6; higher++ )
{
for( int lower = higher + 1; lower < 7; lower++ )
{
Population[ currentIndex++ ] = Population[ higher ];
Population[ currentIndex++ ] = Population[ lower ];
}
}
// Then, we mate 14 pairs of randomly-selected individuals
// from the top third of the parent population. Again, we
// only select the parents here; mating for both this group
// and the preceding one takes place later
for( int i = 0; i < 14; i++ )
{
Population[ currentIndex++ ] = Population[ rand() % 10 ];
Population[ currentIndex++ ] = Population[ rand() % 25 + 10 ];
}
// This is the actual mating process for the last two groups
for( i = 20; i < 90; i += 2 )
{
// First, apply crossover to each pair of parents
Crossover( Population[ i ].DNA, Population[ i + 1 ].DNA );
// And then mutate the children, maybe
Mutation( Population[ i ].DNA );
Mutation( Population[ i + 1 ].DNA );
}
// Finally, complete the population with a handful of brand
// new individuals to introduce new variety into the gene pool
for( i = 90; i < GA_POPULATION_SIZE; i++ )
{
MakeRandomIndividual( i );
}
}
/****************************************************************
* The Genetic Operators
***************************************************************/
// We crossover using the Disruption method (each gene can
// crossover independantly from the others). Given the small
// number of genes in our scenario, this sounds like a reasonable
// approach.
void Genetic::Crossover( Chromosome & c1, Chromosome & c2 )
{
for( int i = 0; i < ALL_PRIORITIES; i++ )
{
if( rand() % 2 == 0 )
{
double tmp = c1.Priorities[ i ];
c1.Priorities[ i ] = c2.Priorities[ i ];
c2.Priorities[ i ] = tmp;
}
}
}
// We mutate by replacing one gene by a random number, once
// in a while
void Genetic::Mutation( Chromosome & c )
{
for( int i = 0; i < ALL_PRIORITIES; i++ )
{
if( rand() % 100 < MUTATION_RATE )
{
c.Priorities[ i ] = (double) (rand() % 10000) / 10000.0;
}
}
}
/****************************************************************
* REPORTING RESULTS
***************************************************************/
void Genetic::ReportGenerationResults( int which )
{
cout << "RESULTS FOR GENERATION " << which << endl;
cout << "-------------------------" << endl << endl;
cout << " EAT KILL HEAL FLEE EXPL SHEEP KNIGHT ALIVE CAPTV DAMAG PERF" << endl;
for( int i = 0; i < GA_POPULATION_SIZE; i++ )
{
cout << setw( 6 ) << setprecision( 5 ) << Population[ i ].DNA.Priorities[ EATING_PRIORITY ] << " "
<< setw( 6 ) << setprecision( 5 ) << Population[ i ].DNA.Priorities[ KILLING_PRIORITY ] << " "
<< setw( 6 ) << setprecision( 5 ) << Population[ i ].DNA.Priorities[ HEALING_PRIORITY ] << " "
<< setw( 6 ) << setprecision( 5 ) << Population[ i ].DNA.Priorities[ FLEEING_PRIORITY ] << " "
<< setw( 6 ) << setprecision( 5 ) << Population[ i ].DNA.Priorities[ EXPLORING_PRIORITY ] << " "
<< setw( 8 ) << Population[ i ].StatsSheepEaten << " "
<< setw( 7 ) << Population[ i ].StatsKnightsKilled << " "
<< setw( 6 ) << Population[ i ].StatsTimeAlive << " "
<< setw( 6 ) << Population[ i ].StatsTimeCaptive << " "
<< setw( 6 ) << Population[ i ].StatsDamageTaken << " "
<< setw( 8 ) << setprecision( 6 ) << Population[ i ].Performance
<< endl;
}
cout << endl << endl;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -