⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 libsvmsim.m

📁 Support Vector Machines is a powerful methodology for solving problems in nonlinear classification a
💻 M
字号:
% LIBSVMSIM  Simulate Support Vector Machine.%% Syntax:%   y = libsvmsim(svm,x);%   [y,p] = libsvmsim(svm,x);%% Input Arguments:%   svm - Support vector machine (struct, described in LIBSVMOPT).%   x   - Input data (size M*n). In general, x may be a multidimensional array%         with the last dimension of size n.%% Output Arguments:%   y   - Simulated output (size M*1). In general, y will be a multidimensional%         array with scalar last dimension. For classification, y>0 predicts the%         first class label of svm.label, y<0 the second.%   p   - Predicted probabilities for classification (size M*1). In general,%         p will be a multidimensional array with scalar last dimension. The%         SVM must contain probability information. p contains the probability%         values for the predicted class (in the above sense). The probability%         for the other (not predicted) class is 1-p.% ------------------------------------------------------------------------------% MATLAB Interface for LIBSVM, Version 1.2%% Copyright (C) 2004-2005 Michael Vogt% Written by Michael Vogt, Atanas Ayarov and Bennet Gedan% % This program is free software; you can redistribute it and/or modify it% under the terms of the GNU General Public License as published by the Free% Software Foundation; either version 2 of the License, or (at your option)% any later version.% ------------------------------------------------------------------------------

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -