⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 libsvmaux.h

📁 Support Vector Machines is a powerful methodology for solving problems in nonlinear classification a
💻 H
字号:
/*============================================================================*\| MATLAB Interface for LIBSVM, Version 1.2                                     ||                                                                              || Copyright (C) 2004-2005 Michael Vogt                                         || Written by Michael Vogt, Atanas Ayarov and Bennet Gedan                      ||                                                                              || This program is free software; you can redistribute it and/or modify it      || under the terms of the GNU General Public License as published by the Free   || Software Foundation; either version 2 of the License, or (at your option)    || any later version.                                                           |\*============================================================================*/#include "svm.h"/* LIBSVM's svm_model is not available in svm.h */struct svm_model{  struct svm_parameter param;  int nr_class;  int l;  struct svm_node **SV;  double **sv_coef;  double *rho;  double *probA;  double *probB;  int *label;  int *nSV;  int free_sv;};/* kernel struct */typedef struct {  enum { KERNEL_LINEAR,         KERNEL_POLY,         KERNEL_RADIAL,         KERNEL_GAUSS,         KERNEL_TANH       } type;         /* kernel function type */  int    degree;       /* degree of polynomial kernel */  double offset;       /* offset for poly and tanh kernel */  double gamma;        /* coefficient of radial kernel & tanh kernel */  double *gammav;      /* coefficient vector of Gauss kernel */  long   gamman;       /* length of coefficient vector */} kernel;/* optimizer options */typedef struct {  double tol;          /* tolerance of KKT check */  int    shrink;       /* shrinking heuristics (0/1)*/  double cache;        /* cache size in MB */  double weight;       /* weight factor for class -1 (or wlabel) */  int    wlabel;       /* label of class to be weigthed */  int    verbose;      /* verbose mode (0/1) */  int    style;        /* 0: C/eps style, 1: nu style */  int    prob;         /* compute probability information (0/1) */} options;/* kernel names */#define KNAME_LINEAR  "linear"#define KNAME_POLY    "poly"#define KNAME_GAUSS   "gauss"#define KNAME_TANH    "tanh"/* kernel parameter names */#define FNAME_TYPE    "type"#define FNAME_GAMMA   "gamma"#define FNAME_OFFSET  "offset"#define FNAME_DEGR    "degree"#define FNAME_WIDTH   "width"/* SVM field names */#define FNAME_COEF    "coef"#define FNAME_VECT    "vect"#define FNAME_BIAS    "bias"#define FNAME_KER     "ker"#define FNAME_LABEL   "label"#define FNAME_PROB    "prob"/* SVM option names */#define FNAME_TOL     "tol"#define FNAME_SHRINK  "shrink"#define FNAME_CACHE   "cache"#define FNAME_WEIGHT  "weight"#define FNAME_WLABEL  "wlabel"#define FNAME_VERBOSE "verbose"#define FNAME_STYLE   "style"#define FNAME_PROBOPT "prob"/* prototypes of MATLAB interface functions */int getKernel(kernel*, const mxArray*, long);int getOptionsStruct(const mxArray**, const mxArray*[], int);int getOptions(options*, const mxArray*, long);int dumpOptions(kernel*, options*, double, double, int);int dumpSolution(options*,struct svm_model*, struct svm_problem*, double*, double, int, long, int);int getSvm(const mxArray*, double**, double**, long*, long*, double*, kernel*);int convOptions( struct svm_parameter*, double, double, kernel*, options*, int );int convData(struct svm_problem*, double*, double*, int, long);int buildSolution(mxArray**, const mxArray*, struct svm_model*,struct svm_problem*, options *opt, int, int, long);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -