📄 natcubicclosedspline.java
字号:
//**********************************************************************////<copyright>////BBN Technologies//10 Moulton Street//Cambridge, MA 02138//(617) 873-8000////Copyright (C) BBNT Solutions LLC. All rights reserved.////</copyright>//**********************************************************************////$Source: /cvs/distapps/openmap/src/openmap/com/bbn/openmap/omGraphics/NatCubicClosedSpline.java,v $//$RCSfile: NatCubicClosedSpline.java,v $//$Revision: 1.3.2.1 $//$Date: 2004/10/14 18:27:25 $//$Author: dietrick $////**********************************************************************package com.bbn.openmap.omGraphics;/** * A natural cubic closed spline calculation. * * @author Eric LEPICIER * @see <a href="http://www.cse.unsw.edu.au/~lambert/splines/">Splines * </a> * @version 21 juil. 2002 */public class NatCubicClosedSpline extends NatCubicSpline { /** * Calculates the closed natural cubic spline that interpolates * x[0], x[1], ... x[n]. The first segment is returned as C[0].a + * C[0].b*u + C[0].c*u^2 + C[0].d*u^3 0 <=u <1 the other segments * are in C[1], C[2], ... C[n] * * @see com.bbn.openmap.omGraphics.NatCubicSpline#calcNaturalCubic(int, * int[]) */ Cubic[] calcNaturalCubic(int n, int[] x) { float[] w = new float[n + 1]; float[] v = new float[n + 1]; float[] y = new float[n + 1]; float[] D = new float[n + 1]; float z, F, G, H; int k; /* * We solve the equation [4 1 1] [D[0]] [3(x[1] - x[n]) ] |1 4 * 1 | |D[1]| |3(x[2] - x[0]) | | 1 4 1 | | . | = | . | | * ..... | | . | | . | | 1 4 1| | . | |3(x[n] - x[n-2])| [1 1 * 4] [D[n]] [3(x[0] - x[n-1])] * * by decomposing the matrix into upper triangular and lower * matrices and then back sustitution. See Spath "Spline * Algorithms for Curves and Surfaces" pp 19--21. The D[i] are * the derivatives at the knots. */ w[1] = v[1] = z = 1.0f / 4.0f; y[0] = z * 3 * (x[1] - x[n]); H = 4; F = 3 * (x[0] - x[n - 1]); G = 1; for (k = 1; k < n; k++) { v[k + 1] = z = 1 / (4 - v[k]); w[k + 1] = -z * w[k]; y[k] = z * (3 * (x[k + 1] - x[k - 1]) - y[k - 1]); H = H - G * w[k]; F = F - G * y[k - 1]; G = -v[k] * G; } H = H - (G + 1) * (v[n] + w[n]); y[n] = F - (G + 1) * y[n - 1]; D[n] = y[n] / H; D[n - 1] = y[n - 1] - (v[n] + w[n]) * D[n]; /* This equation is WRONG! in my copy of Spath */ for (k = n - 2; k >= 0; k--) { D[k] = y[k] - v[k + 1] * D[k + 1] - w[k + 1] * D[n]; } /* now compute the coefficients of the cubics */ Cubic[] C = new Cubic[n + 1]; for (k = 0; k < n; k++) { C[k] = new Cubic((float) x[k], D[k], 3 * (x[k + 1] - x[k]) - 2 * D[k] - D[k + 1], 2 * (x[k] - x[k + 1]) + D[k] + D[k + 1]); } C[n] = new Cubic((float) x[n], D[n], 3 * (x[0] - x[n]) - 2 * D[n] - D[0], 2 * (x[n] - x[0]) + D[n] + D[0]); return C; } /** * @see com.bbn.openmap.omGraphics.NatCubicSpline#calc(int[], * int[]) */ public int[][] calc(int[] xpoints, int[] ypoints) { int[] xpts = xpoints; int[] ypts = ypoints; int l = xpoints.length; if (xpoints.length > 2) { if (xpoints[0] == xpoints[l - 1] && ypoints[0] == ypoints[l - 1]) { xpts = new int[l - 1]; System.arraycopy(xpoints, 0, xpts, 0, l - 1); ypts = new int[l - 1]; System.arraycopy(ypoints, 0, ypts, 0, l - 1); } } return super.calc(xpts, ypts); } /** * @see com.bbn.openmap.omGraphics.NatCubicSpline#calc(float[], * float) */ public float[] calc(float[] llpoints, float precision) { float[] llpts = llpoints; int l = llpoints.length; if (l > 4) { if (Math.abs(llpoints[0] - llpoints[l - 2]) < 1e-5 && Math.abs(llpoints[1] - llpoints[l - 1]) < 1e-5) { llpts = new float[l - 2]; System.arraycopy(llpoints, 0, llpts, 0, l - 2); } } return super.calc(llpts, precision); }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -