⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 the k-nearest-neighbor application project.htm

📁 在weak环境下的knn算法开发 具体需要的说明都在文件包中
💻 HTM
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!-- saved from url=(0051)http://ww2.cs.fsu.edu/~chap/projects/knn/index.html -->
<HTML><HEAD><TITLE>The k-nearest-neighbor Application project</TITLE>
<META http-equiv=Content-Type content="text/html; charset=utf-8">
<STYLE type=text/css>BODY {
	FONT-SIZE: 10pt; MARGIN: 50px; LINE-HEIGHT: 25px; FONT-FAMILY: Arial, Helvetica, sans-serif
}
.titletext {
	FONT-SIZE: 20pt; FONT-FAMILY: Arial, Helvetica, sans-serif
}
.section {
	FONT-WEIGHT: bold; FONT-SIZE: 12pt; FONT-FAMILY: Arial, Helvetica, sans-serif
}
</STYLE>

<META content="MSHTML 6.00.2900.2180" name=GENERATOR></HEAD>
<BODY>
<DIV align=center>
<P><FONT class=titletext>K-Nearest-Neighbor Project</FONT> </P>John Chap - 
CAP5638 </DIV>
<HR align=center width="60%" SIZE=1>

<P>This project was to create a k-nearest-neighbor classifier program using 
Weka, a kind of data mining library. The goal was for a program that is 
versatile, feature rich and graphical, in a last ditch attempt to pass CAP5638 
Pattern Recognition.</P>
<P>This is it!</P>
<P><A href="http://ww2.cs.fsu.edu/~chap/projects/knn/cap5638.jar">Jar 
Archive</A></P>
<P><A href="http://ww2.cs.fsu.edu/~chap/projects/knn/cap5638.zip">Source code 
(Zipped)</A></P>
<P><A 
href="http://ww2.cs.fsu.edu/~chap/projects/knn/javadoc/index.html">Javadoc</A></P>
<P><A 
href="http://ww2.cs.fsu.edu/~chap/projects/knn/instructions.html">Instructions</A></P>
<P><A href="http://ww2.cs.fsu.edu/~chap/projects/knn/project-notes.html">Project 
notes</A> </P></BODY></HTML>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -