⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 node.html

📁 < 数据挖掘--实用机器学习技术及java实现> 一书结合数据挖掘和机器学习的知识,作者陈述了自动挖掘模式的基础理论,并且以java语言实现了具有代表性的各类数据挖掘方法.例如:class
💻 HTML
📖 第 1 页 / 共 3 页
字号:
<A NAME="regression(weka.classifiers.m5.Function)"><!-- --></A><H3>regression</H3><PRE>public final void <B>regression</B>(<A HREF="../../../weka/classifiers/m5/Function.html">Function</A>&nbsp;function)</PRE><DL><DD>Computes the coefficients of a linear model using the instances at this       node<DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>function</CODE> - the linear model containing the index of the attributes;       coefficients are to be computed</DL></DD></DL><HR><A NAME="function()"><!-- --></A><H3>function</H3><PRE>public final void <B>function</B>()                    throws java.lang.Exception</PRE><DL><DD>Finds the appropriate order of the unsmoothed linear model at this node<DD><DL></DL></DD><DD><DL><DT><B>Throws:</B><DD><CODE>java.lang.Exception</CODE> - if something goes wrong</DL></DD></DL><HR><A NAME="factor(int, int, double)"><!-- --></A><H3>factor</H3><PRE>public final double <B>factor</B>(int&nbsp;n,                           int&nbsp;v,                           double&nbsp;pruningFactor)</PRE><DL><DD>Calculates a multiplication factor used at this node<DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>n</CODE> - the number of instances<DD><CODE>v</CODE> - the number of the coefficients<DT><B>Returns:</B><DD>multiplication factor</DL></DD></DL><HR><A NAME="smoothen()"><!-- --></A><H3>smoothen</H3><PRE>public final void <B>smoothen</B>()</PRE><DL><DD>Smoothens all unsmoothed formulae at the tree leaves under this node.<DD><DL></DL></DD></DL><HR><A NAME="smoothenFormula(weka.classifiers.m5.Node)"><!-- --></A><H3>smoothenFormula</H3><PRE>public final void <B>smoothenFormula</B>(<A HREF="../../../weka/classifiers/m5/Node.html">Node</A>&nbsp;current)</PRE><DL><DD>Recursively smoothens the unsmoothed linear model at this node with the      unsmoothed linear models at the nodes above this<DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>current</CODE> - the unsmoothed linear model at the up node of the      'current' will be used for smoothening</DL></DD></DL><HR><A NAME="predictionsToString(weka.core.Instances, int, boolean)"><!-- --></A><H3>predictionsToString</H3><PRE>public final java.lang.String <B>predictionsToString</B>(<A HREF="../../../weka/core/Instances.html">Instances</A>&nbsp;inst,                                                  int&nbsp;lmNo,                                                  boolean&nbsp;smooth)                                           throws java.lang.Exception</PRE><DL><DD>Converts the predictions by the tree under this node to a string<DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>insta</CODE> - instances<DD><CODE>smooth</CODE> - =ture using the smoothed models; otherwise, the unsmoothed<DT><B>Returns:</B><DD>the converted string<DT><B>Throws:</B><DD><CODE>java.lang.Exception</CODE> - if something goes wrong</DL></DD></DL><HR><A NAME="leafNum(weka.core.Instance)"><!-- --></A><H3>leafNum</H3><PRE>public final int <B>leafNum</B>(<A HREF="../../../weka/core/Instance.html">Instance</A>&nbsp;instance)</PRE><DL><DD>Detects which leaf a instance falls into<DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>i</CODE> - instance i<DD><CODE>inst</CODE> - instances<DT><B>Returns:</B><DD>the leaf no.</DL></DD></DL><HR><A NAME="predict(weka.core.Instance, boolean)"><!-- --></A><H3>predict</H3><PRE>public final double <B>predict</B>(<A HREF="../../../weka/core/Instance.html">Instance</A>&nbsp;instance,                            boolean&nbsp;smooth)</PRE><DL><DD>Predicts the class value of an instance by the tree<DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>i</CODE> - instance i<DT><B>Returns:</B><DD>the predicted value</DL></DD></DL><HR><A NAME="errors(weka.core.Instances, boolean)"><!-- --></A><H3>errors</H3><PRE>public final <A HREF="../../../weka/classifiers/m5/Errors.html">Errors</A> <B>errors</B>(<A HREF="../../../weka/core/Instances.html">Instances</A>&nbsp;inst,                           boolean&nbsp;smooth)                    throws java.lang.Exception</PRE><DL><DD>Evaluates a tree<DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>inst</CODE> - instances<DT><B>Returns:</B><DD>the evaluation results<DT><B>Throws:</B><DD><CODE>java.lang.Exception</CODE> - if something goes wrong</DL></DD></DL><HR><A NAME="measures(weka.core.Instances, boolean)"><!-- --></A><H3>measures</H3><PRE>public final <A HREF="../../../weka/classifiers/m5/Measures.html">Measures</A> <B>measures</B>(<A HREF="../../../weka/core/Instances.html">Instances</A>&nbsp;inst,                               boolean&nbsp;smooth)                        throws java.lang.Exception</PRE><DL><DD>Computes performance measures of a tree<DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>inst</CODE> - instances<DD><CODE>smooth</CODE> - =true uses the smoothed models;         otherwise uses the unsmoothed models<DT><B>Returns:</B><DD>the performance measures<DT><B>Throws:</B><DD><CODE>java.lang.Exception</CODE> - if something goes wrong</DL></DD></DL><HR><A NAME="validation(weka.core.Instances)"><!-- --></A><H3>validation</H3><PRE>public final <A HREF="../../../weka/classifiers/m5/Measures.html">Measures</A>[] <B>validation</B>(<A HREF="../../../weka/core/Instances.html">Instances</A>&nbsp;inst)                            throws java.lang.Exception</PRE><DL><DD>Computes performance measures for both unsmoothed and smoothed models<DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>inst</CODE> - instances<DT><B>Throws:</B><DD><CODE>java.lang.Exception</CODE> - if something goes wrong</DL></DD></DL><HR><A NAME="copy(weka.classifiers.m5.Node)"><!-- --></A><H3>copy</H3><PRE>public final <A HREF="../../../weka/classifiers/m5/Node.html">Node</A> <B>copy</B>(<A HREF="../../../weka/classifiers/m5/Node.html">Node</A>&nbsp;up)                throws java.lang.Exception</PRE><DL><DD>Makes a copy of the tree under this node<DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>up</CODE> - the parant node of the new node<DT><B>Returns:</B><DD>a copy of the tree under this node<DT><B>Throws:</B><DD><CODE>java.lang.Exception</CODE> - if something goes wrong</DL></DD></DL><HR><A NAME="measuresToString(weka.classifiers.m5.Measures[], weka.core.Instances, int, int, java.lang.String)"><!-- --></A><H3>measuresToString</H3><PRE>public final java.lang.String <B>measuresToString</B>(<A HREF="../../../weka/classifiers/m5/Measures.html">Measures</A>[]&nbsp;measures,                                               <A HREF="../../../weka/core/Instances.html">Instances</A>&nbsp;inst,                                               int&nbsp;lmNo,                                               int&nbsp;verbosity,                                               java.lang.String&nbsp;str)                                        throws java.lang.Exception</PRE><DL><DD>Converts the performance measures into a string<DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>measures[]</CODE> - contains both the unsmoothed and smoothed measures<DD><CODE>inst</CODE> - the instances<DD><CODE>lmNo</CODE> - also converts the predictions by all linear models if lmNo=0,         or one linear model spedified by lmNo.<DD><CODE>verbosity</CODE> - the verbosity level<DD><CODE>str</CODE> - the type of evaluation, one of         "t" for training, "T" for testing,         "f" for fold training, "F" for fold testing,         "x" for cross-validation<DT><B>Returns:</B><DD>the converted string<DT><B>Throws:</B><DD><CODE>java.lang.Exception</CODE> - if something goes wrong</DL></DD></DL><!-- ========= END OF CLASS DATA ========= --><HR><!-- ========== START OF NAVBAR ========== --><A NAME="navbar_bottom"><!-- --></A><TABLE BORDER="0" WIDTH="100%" CELLPADDING="1" CELLSPACING="0"><TR><TD COLSPAN=2 BGCOLOR="#EEEEFF" CLASS="NavBarCell1"><A NAME="navbar_bottom_firstrow"><!-- --></A><TABLE BORDER="0" CELLPADDING="0" CELLSPACING="3">  <TR ALIGN="center" VALIGN="top">  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../../overview-summary.html"><FONT CLASS="NavBarFont1"><B>Overview</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="package-summary.html"><FONT CLASS="NavBarFont1"><B>Package</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#FFFFFF" CLASS="NavBarCell1Rev"> &nbsp;<FONT CLASS="NavBarFont1Rev"><B>Class</B></FONT>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="package-tree.html"><FONT CLASS="NavBarFont1"><B>Tree</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../../deprecated-list.html"><FONT CLASS="NavBarFont1"><B>Deprecated</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../../index-all.html"><FONT CLASS="NavBarFont1"><B>Index</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../../help-doc.html"><FONT CLASS="NavBarFont1"><B>Help</B></FONT></A>&nbsp;</TD>  </TR></TABLE></TD><TD ALIGN="right" VALIGN="top" ROWSPAN=3><EM></EM></TD></TR><TR><TD BGCOLOR="white" CLASS="NavBarCell2"><FONT SIZE="-2">&nbsp;<A HREF="../../../weka/classifiers/m5/Measures.html"><B>PREV CLASS</B></A>&nbsp;&nbsp;<A HREF="../../../weka/classifiers/m5/Options.html"><B>NEXT CLASS</B></A></FONT></TD><TD BGCOLOR="white" CLASS="NavBarCell2"><FONT SIZE="-2">  <A HREF="../../../index.html" TARGET="_top"><B>FRAMES</B></A>  &nbsp;&nbsp;<A HREF="Node.html" TARGET="_top"><B>NO FRAMES</B></A></FONT></TD></TR><TR><TD VALIGN="top" CLASS="NavBarCell3"><FONT SIZE="-2">  SUMMARY: &nbsp;INNER&nbsp;|&nbsp;FIELD&nbsp;|&nbsp;<A HREF="#constructor_summary">CONSTR</A>&nbsp;|&nbsp;<A HREF="#method_summary">METHOD</A></FONT></TD><TD VALIGN="top" CLASS="NavBarCell3"><FONT SIZE="-2">DETAIL: &nbsp;FIELD&nbsp;|&nbsp;<A HREF="#constructor_detail">CONSTR</A>&nbsp;|&nbsp;<A HREF="#method_detail">METHOD</A></FONT></TD></TR></TABLE><!-- =========== END OF NAVBAR =========== --><HR></BODY></HTML>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -