⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 nominalprediction.html

📁 < 数据挖掘--实用机器学习技术及java实现> 一书结合数据挖掘和机器学习的知识,作者陈述了自动挖掘模式的基础理论,并且以java语言实现了具有代表性的各类数据挖掘方法.例如:class
💻 HTML
📖 第 1 页 / 共 2 页
字号:
<A NAME="constructor_detail"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=1><FONT SIZE="+2"><B>Constructor Detail</B></FONT></TD></TR></TABLE><A NAME="NominalPrediction(double, double[])"><!-- --></A><H3>NominalPrediction</H3><PRE>public <B>NominalPrediction</B>(double&nbsp;actual,                         double[]&nbsp;distribution)</PRE><DL><DD>Creates the NominalPrediction object with a default weight of 1.0.<DD><DL><DT><B>Parameters:</B><DD><CODE>actual</CODE> - the actual value, or MISSING_VALUE.<DD><CODE>distribution</CODE> - the predicted probability distribution. Use  NominalPrediction.makeDistribution() if you only know the predicted value.</DL></DD></DL><HR><A NAME="NominalPrediction(double, double[], double)"><!-- --></A><H3>NominalPrediction</H3><PRE>public <B>NominalPrediction</B>(double&nbsp;actual,                         double[]&nbsp;distribution,                         double&nbsp;weight)</PRE><DL><DD>Creates the NominalPrediction object.<DD><DL><DT><B>Parameters:</B><DD><CODE>actual</CODE> - the actual value, or MISSING_VALUE.<DD><CODE>distribution</CODE> - the predicted probability distribution. Use  NominalPrediction.makeDistribution() if you only know the predicted value.<DD><CODE>weight</CODE> - the weight assigned to the prediction.</DL></DD></DL><!-- ============ METHOD DETAIL ========== --><A NAME="method_detail"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=1><FONT SIZE="+2"><B>Method Detail</B></FONT></TD></TR></TABLE><A NAME="distribution()"><!-- --></A><H3>distribution</H3><PRE>public double[] <B>distribution</B>()</PRE><DL><DD>Gets the predicted probabilities<DD><DL></DL></DD></DL><HR><A NAME="actual()"><!-- --></A><H3>actual</H3><PRE>public double <B>actual</B>()</PRE><DL><DD>Gets the actual class value.<DD><DL><DT><B>Specified by: </B><DD><CODE><A HREF="../../../weka/classifiers/evaluation/Prediction.html#actual()">actual</A></CODE> in interface <CODE><A HREF="../../../weka/classifiers/evaluation/Prediction.html">Prediction</A></CODE></DL></DD><DD><DL><DT><B>Returns:</B><DD>the actual class value, or MISSING_VALUE if no prediction was made.</DL></DD></DL><HR><A NAME="predicted()"><!-- --></A><H3>predicted</H3><PRE>public double <B>predicted</B>()</PRE><DL><DD>Gets the predicted class value.<DD><DL><DT><B>Specified by: </B><DD><CODE><A HREF="../../../weka/classifiers/evaluation/Prediction.html#predicted()">predicted</A></CODE> in interface <CODE><A HREF="../../../weka/classifiers/evaluation/Prediction.html">Prediction</A></CODE></DL></DD><DD><DL><DT><B>Returns:</B><DD>the predicted class value, or MISSING_VALUE if no prediction was made.</DL></DD></DL><HR><A NAME="weight()"><!-- --></A><H3>weight</H3><PRE>public double <B>weight</B>()</PRE><DL><DD>Gets the weight assigned to this prediction. This is typically the weight of the test instance the prediction was made for.<DD><DL><DT><B>Specified by: </B><DD><CODE><A HREF="../../../weka/classifiers/evaluation/Prediction.html#weight()">weight</A></CODE> in interface <CODE><A HREF="../../../weka/classifiers/evaluation/Prediction.html">Prediction</A></CODE></DL></DD><DD><DL><DT><B>Returns:</B><DD>the weight assigned to this prediction.</DL></DD></DL><HR><A NAME="margin()"><!-- --></A><H3>margin</H3><PRE>public double <B>margin</B>()</PRE><DL><DD>Calculates the prediction margin. This is defined as the difference between the probability predicted for the actual class and the highest predicted probability of the other classes.<DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>the margin for this prediction, or MISSING_VALUE if either the actual or predicted value is missing.</DL></DD></DL><HR><A NAME="makeDistribution(double, int)"><!-- --></A><H3>makeDistribution</H3><PRE>public static double[] <B>makeDistribution</B>(double&nbsp;predictedClass,                                        int&nbsp;numClasses)</PRE><DL><DD>Convert a single prediction into a probability distribution with all zero probabilities except the predicted value which has probability 1.0. If no prediction was made, all probabilities are zero.<DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>predictedClass</CODE> - the index of the predicted class, or  MISSING_VALUE if no prediction was made.<DD><CODE>numClasses</CODE> - the number of possible classes for this nominal prediction.<DT><B>Returns:</B><DD>the probability distribution.</DL></DD></DL><HR><A NAME="makeUniformDistribution(int)"><!-- --></A><H3>makeUniformDistribution</H3><PRE>public static double[] <B>makeUniformDistribution</B>(int&nbsp;numClasses)</PRE><DL><DD>Creates a uniform probability distribution -- where each of the possible classes is assigned equal probability.<DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>numClasses</CODE> - the number of possible classes for this nominal prediction.<DT><B>Returns:</B><DD>the probability distribution.</DL></DD></DL><HR><A NAME="toString()"><!-- --></A><H3>toString</H3><PRE>public java.lang.String <B>toString</B>()</PRE><DL><DD>Gets a human readable representation of this prediction.<DD><DL><DT><B>Overrides:</B><DD><CODE>toString</CODE> in class <CODE>java.lang.Object</CODE></DL></DD><DD><DL><DT><B>Returns:</B><DD>a human readable representation of this prediction.</DL></DD></DL><!-- ========= END OF CLASS DATA ========= --><HR><!-- ========== START OF NAVBAR ========== --><A NAME="navbar_bottom"><!-- --></A><TABLE BORDER="0" WIDTH="100%" CELLPADDING="1" CELLSPACING="0"><TR><TD COLSPAN=2 BGCOLOR="#EEEEFF" CLASS="NavBarCell1"><A NAME="navbar_bottom_firstrow"><!-- --></A><TABLE BORDER="0" CELLPADDING="0" CELLSPACING="3">  <TR ALIGN="center" VALIGN="top">  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../../overview-summary.html"><FONT CLASS="NavBarFont1"><B>Overview</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="package-summary.html"><FONT CLASS="NavBarFont1"><B>Package</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#FFFFFF" CLASS="NavBarCell1Rev"> &nbsp;<FONT CLASS="NavBarFont1Rev"><B>Class</B></FONT>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="package-tree.html"><FONT CLASS="NavBarFont1"><B>Tree</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../../deprecated-list.html"><FONT CLASS="NavBarFont1"><B>Deprecated</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../../index-all.html"><FONT CLASS="NavBarFont1"><B>Index</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../../help-doc.html"><FONT CLASS="NavBarFont1"><B>Help</B></FONT></A>&nbsp;</TD>  </TR></TABLE></TD><TD ALIGN="right" VALIGN="top" ROWSPAN=3><EM></EM></TD></TR><TR><TD BGCOLOR="white" CLASS="NavBarCell2"><FONT SIZE="-2">&nbsp;<A HREF="../../../weka/classifiers/evaluation/MarginCurve.html"><B>PREV CLASS</B></A>&nbsp;&nbsp;<A HREF="../../../weka/classifiers/evaluation/NumericPrediction.html"><B>NEXT CLASS</B></A></FONT></TD><TD BGCOLOR="white" CLASS="NavBarCell2"><FONT SIZE="-2">  <A HREF="../../../index.html" TARGET="_top"><B>FRAMES</B></A>  &nbsp;&nbsp;<A HREF="NominalPrediction.html" TARGET="_top"><B>NO FRAMES</B></A></FONT></TD></TR><TR><TD VALIGN="top" CLASS="NavBarCell3"><FONT SIZE="-2">  SUMMARY: &nbsp;INNER&nbsp;|&nbsp;FIELD&nbsp;|&nbsp;<A HREF="#constructor_summary">CONSTR</A>&nbsp;|&nbsp;<A HREF="#method_summary">METHOD</A></FONT></TD><TD VALIGN="top" CLASS="NavBarCell3"><FONT SIZE="-2">DETAIL: &nbsp;FIELD&nbsp;|&nbsp;<A HREF="#constructor_detail">CONSTR</A>&nbsp;|&nbsp;<A HREF="#method_detail">METHOD</A></FONT></TD></TR></TABLE><!-- =========== END OF NAVBAR =========== --><HR></BODY></HTML>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -