📄 recruitingantcolonysystemtsp.cc
字号:
/* >->->->->->->->->->->->->->->->->->->->->->->->->->->->->->->->->->->->->RecruitingAntColonySystemTSP.cc, Heiko Stamer <stamer@informatik.uni-leipzig.de>Recruiting Ant Colony System (RACS) for the Traveling Salesman Problem (TSP) [Recruiting Ant Colony System: Extending the Ant Colony System by a Group Recruitment Strategy] [The Ant System: Optimization by a colony of cooperating agents] by M. Dorigo, V. Maniezzo, A. Colorni IEEE Transactions on Systems, Man and Cybernetics - Part B, Vol.26-1 1996 [Ant Colony System: A Cooperative Learning Approach to the TSP] by M. Dorigo and L. M. Gambardella IEEE Transactions on Evolutionary Computation, Vol. 1, No. 1, 1997 http://stinfwww.informatik.uni-leipzig.de/~mai97ixb >->->->->->->->->->->->->->->->->->->->->->->->->->->->->->->->->->->->-> Copyright (C) 2001 - until_the_end_of_the_ants <Heiko Stamer> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <stdio.h>#include <stdlib.h>#include <math.h>#include <unistd.h>#include <time.h>#include <assert.h>#define N 70double C[N][2] = { {64 , 96} , {80 , 39} , {69 , 23} , {72 , 42} , {48 , 67} , {58 ,43} , {81 , 34} , {79 , 17} , {30 , 23} , {42 , 67} , {7 , 76} , {29 , 51} , {78, 92} , {64 , 8} , {95 , 57} , {57 , 91} , {40 , 35} , {68 , 40} , {92 , 34} ,{62 , 1} , {28 , 43} , {76 , 73} , {67 , 88} , {93 , 54} , {6 , 8} , {87 , 18} ,{30 , 9} , {77 , 13} , {78 , 94} , {55 , 3} , {82 , 88} , {73 , 28} , {20 , 55}, {27 , 43} , {95 , 86} , {67 , 99} , {48 , 83} , {75 , 81} , {8 , 19} , {20 ,18} , {54 , 38} , {63 , 36} , {44 , 33} , {52 , 18} , {12 , 13} , {25 , 5} , {58, 85} , {5 , 67} , {90 , 9} , {41 , 76} , {25 , 76} , {37 , 64} , {56 , 63} ,{10 , 55} , {98 , 7} , {16 , 74} , {89 , 60} , {48 , 82} , {81 , 76} , {29 , 60}, {17 , 22} , {5 , 45} , {79 , 70} , {9 , 100} , {17 , 82} , {74 , 67} , {10 ,68} , {48 , 19} , {83 , 86} , {84 , 94} };typedef int Tour[N][2];typedef double doubleMatrix[N][N];doubleMatrix D;double dist(int i, int j){ return sqrt(pow((C[i][0]-C[j][0]), 2.0) + pow((C[i][1]-C[j][1]), 2.0));}void calc_dist(){ for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) D[i][j] = dist(i, j);}double max_dist(){ double max_dist = 0.0; for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) if (dist(i, j) > max_dist) max_dist = dist(i, j); return max_dist;}double calc_length(Tour tour){ double l = 0.0; for (int n = 0; n < N; n++) { int i = tour[n][0]; int j = tour[n][1]; l += D[i][j]; } return (l);}void print_tour(Tour tour){ for (int n = 0; n < N; n++) printf("( %d , %d ) ", tour[n][0], tour[n][1]); printf("\n");}int sum_sequence(int array[], int count){ int sum = 0; for (int i = 0; i < count; i++) sum += array[i]; return (sum);}/******************************************************************************/class Ant{ protected: int START_CITY, CURRENT_CITY; int ALLOWED[N]; Tour CURRENT_TOUR; int CURRENT_TOUR_INDEX; public: inline Ant(int start_city) { START_CITY = start_city; } inline void moveTo(int to_city) { if (to_city >= 0) { ALLOWED[to_city] = 0; CURRENT_TOUR[CURRENT_TOUR_INDEX][0] = CURRENT_CITY; CURRENT_TOUR[CURRENT_TOUR_INDEX][1] = to_city; CURRENT_TOUR_INDEX++; CURRENT_CITY = to_city; } }};class NNAnt : Ant{ public: inline NNAnt(int start_city): Ant(start_city) { }; inline int choose() { double best_length = (double)N * max_dist(); int best_choose = -1; for (int j = 0; j < N; j++) { if ((ALLOWED[j] == 1) && (D[CURRENT_CITY][j] < best_length)) { best_choose = j; best_length = D[CURRENT_CITY][j]; } } return best_choose; } inline Tour *search() { CURRENT_CITY = START_CITY; CURRENT_TOUR_INDEX = 0; for (int i = 0; i < N; i++) ALLOWED[i] = 1; ALLOWED[CURRENT_CITY] = 0; while (sum_sequence(ALLOWED, N) > 0) moveTo(choose()); ALLOWED[START_CITY] = 1; moveTo(START_CITY); return &CURRENT_TOUR; }};class RecruitingAntColonySystem;class TransportAnt;class SearchAnt : Ant{ friend class RecruitingAntColonySystem; friend class TransportAnt; private: RecruitingAntColonySystem *RACS; public: SearchAnt(RecruitingAntColonySystem *racs, int start_city): Ant(start_city) { RACS = racs; } inline int choose(); inline Tour *search();};class TransportAnt : Ant{ friend class RecruitingAntColonySystem; friend class SearchAnt; private: RecruitingAntColonySystem *RACS; int K; double XI; public: TransportAnt(RecruitingAntColonySystem *racs, int k, double xi); inline int choose(); inline Tour *follow();};class RecruitingAntColonySystem{ friend class SearchAnt; friend class TransportAnt; private: double ALPHA, BETA, RHO, TAU0, Q0; doubleMatrix TAU, dTAU; static const int M = N; static const int R0 = 5; static const int R1 = M; static const int R = R0 * R1; double THETA[R0][N][N], dTHETA[R0][N][N]; SearchAnt *SEARCH_ANTS[M]; TransportAnt *TRANSPORT_ANTS[R]; double BEST_LENGTH; Tour BEST_TOUR; public: RecruitingAntColonySystem(double alpha, double beta, double rho, double q0); inline double calc_tau0(); inline void init_tau_by_value(double value); inline void init_theta_by_value(double value); inline void init_tau_by_matrix(doubleMatrix matrix); inline void init_theta_by_matrix(doubleMatrix matrix); inline void init_uniform(); inline void init_random(); inline void init_randomMOAPC(); inline double ETA(int i, int j); inline double transition(int i, int j); inline double theta_transition(int k, int i, int j); inline double sum_transition(int i, int allowed[]); inline double sum_theta_transition(int k, int i, int allowed[]); inline void local_update_rule(int i, int j); inline void clear_global_update(); inline void clear_theta_update(); inline void add_global_update(Tour tour, double length); inline void add_theta_update(int k, Tour tour, double length); inline void global_update_rule(); inline void theta_update_rule(); inline doubleMatrix *get_tau(); inline void sort_search_ants(); inline Tour *search(int T);}; inline int SearchAnt::choose(){ double q = rand() / (double)RAND_MAX; if (q <= RACS->Q0) { double best_value = -1.0; int best_choose = -1; for (int j = 0; j < N; j++) { if ((ALLOWED[j] == 1) && (RACS->transition(CURRENT_CITY, j) > best_value)) { best_choose = j; best_value = RACS->transition(CURRENT_CITY, j); } } return best_choose; } double sum = RACS->sum_transition(CURRENT_CITY, ALLOWED); double p = rand() / (double)RAND_MAX; double p_j = 0.0; for (int j = 0; j < N; j++) { if (ALLOWED[j] == 1) p_j += RACS->transition(CURRENT_CITY, j) / sum; if ((p < p_j) && (ALLOWED[j] == 1)) return j; } return -1;}inline Tour *SearchAnt::search(){ CURRENT_CITY = START_CITY; CURRENT_TOUR_INDEX = 0; for (int i = 0; i < N; i++) ALLOWED[i] = 1; ALLOWED[CURRENT_CITY] = 0; while (sum_sequence(ALLOWED, N) > 0) { int LAST_CITY = CURRENT_CITY; moveTo(choose()); RACS->local_update_rule(LAST_CITY, CURRENT_CITY); } ALLOWED[START_CITY] = 1; RACS->local_update_rule(CURRENT_CITY, START_CITY); moveTo(START_CITY); return &CURRENT_TOUR;}TransportAnt::TransportAnt(RecruitingAntColonySystem *racs, int k, double xi) : Ant((int)((double)N * (rand() / (double)RAND_MAX))){ RACS = racs; K = k; XI = xi;} inline int TransportAnt::choose(){ double q = rand() / (double)RAND_MAX; if (q < XI) { double sum = RACS->sum_theta_transition(K, CURRENT_CITY, ALLOWED); if (sum > 0.0) { double p = rand() / (double)RAND_MAX; double p_j = 0.0; for (int j = 0; j < N; j++) { if (ALLOWED[j] == 1) p_j += RACS->theta_transition(K, CURRENT_CITY, j) / sum; if ((p < p_j) && (ALLOWED[j] == 1)) return j; } return -1; } else { sum = RACS->sum_transition(CURRENT_CITY, ALLOWED); double p = rand() / (double)RAND_MAX; double p_j = 0.0; for (int j = 0; j < N; j++) { if (ALLOWED[j] == 1) p_j += RACS->transition(CURRENT_CITY, j) / sum; if ((p < p_j) && (ALLOWED[j] == 1)) return j; } return -1; } } else { double p0 = rand() / (double)RAND_MAX; if (p0 > XI) { K = (int)((double)RACS->R0 * (rand() / (double)RAND_MAX)); return -1;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -