⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 antcolonysystemtsp.cc

📁 这是用Ant Colony System 解决tsp问题的C++源码 希望对大家研究蚂蚁算法有所帮助
💻 CC
字号:
/*  >->->->->->->->->->->->->->->->->->->->->->->->->->->->->->->->->->->->->     AntColonySystemTSP.cc, Heiko Stamer <stamer@informatik.uni-leipzig.de>       Ant Colony System (ACS) for the Traveling Salesman Problem (TSP)	            [The Ant System: Optimization by a colony of cooperating agents]                   by M. Dorigo, V. Maniezzo, A. Colorni    IEEE Transactions on Systems, Man and Cybernetics - Part B, Vol.26-1 1996		     [Ant Colony System: A Cooperative Learning Approach to the TSP]                    by M. Dorigo and L. M. Gambardella       IEEE Transactions on Evolutionary Computation, Vol. 1, No. 1, 1997	            http://stinfwww.informatik.uni-leipzig.de/~mai97ixb    >->->->->->->->->->->->->->->->->->->->->->->->->->->->->->->->->->->->->  Copyright (C) 2001 - until_the_end_of_the_ants  <Heiko Stamer>    This program is free software; you can redistribute it and/or modify    it under the terms of the GNU General Public License as published by    the Free Software Foundation; either version 2 of the License, or    (at your option) any later version.    This program is distributed in the hope that it will be useful,    but WITHOUT ANY WARRANTY; without even the implied warranty of    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the    GNU General Public License for more details.    You should have received a copy of the GNU General Public License    along with this program; if not, write to the Free Software    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.                 */	#include <stdio.h>#include <stdlib.h>#include <math.h>#include <unistd.h>#include <time.h>#include <assert.h>#define N 70double C[N][2] = { {64 , 96} , {80 , 39} , {69 , 23} , {72 , 42} , {48 , 67} , {58 ,43} , {81 , 34} , {79 , 17} , {30 , 23} , {42 , 67} , {7 , 76} , {29 , 51} , {78, 92} , {64 , 8} , {95 , 57} , {57 , 91} , {40 , 35} , {68 , 40} , {92 , 34} ,{62 , 1} , {28 , 43} , {76 , 73} , {67 , 88} , {93 , 54} , {6 , 8} , {87 , 18} ,{30 , 9} , {77 , 13} , {78 , 94} , {55 , 3} , {82 , 88} , {73 , 28} , {20 , 55}, {27 , 43} , {95 , 86} , {67 , 99} , {48 , 83} , {75 , 81} , {8 , 19} , {20 ,18} , {54 , 38} , {63 , 36} , {44 , 33} , {52 , 18} , {12 , 13} , {25 , 5} , {58, 85} , {5 , 67} , {90 , 9} , {41 , 76} , {25 , 76} , {37 , 64} , {56 , 63} ,{10 , 55} , {98 , 7} , {16 , 74} , {89 , 60} , {48 , 82} , {81 , 76} , {29 , 60}, {17 , 22} , {5 , 45} , {79 , 70} , {9 , 100} , {17 , 82} , {74 , 67} , {10 ,68} , {48 , 19} , {83 , 86} , {84 , 94} };typedef int Tour[N][2];typedef double doubleMatrix[N][N];doubleMatrix D;double dist(int i, int j){	return sqrt(pow((C[i][0]-C[j][0]), 2.0) + pow((C[i][1]-C[j][1]), 2.0));}void calc_dist(){	for (int i = 0; i < N; i++)		for (int j = 0; j < N; j++)			D[i][j] = dist(i, j);}double max_dist(){	double max_dist = 0.0;	for (int i = 0; i < N; i++)		for (int j = 0; j < N; j++)			if (dist(i, j) > max_dist)				max_dist = dist(i, j);	return max_dist;}double calc_length(Tour tour){	double l = 0.0;	for (int n = 0; n < N; n++)	{		int i = tour[n][0];		int j = tour[n][1];		l += D[i][j];	}	return (l);}void print_tour(Tour tour){	for (int n = 0; n < N; n++)		printf("( %d , %d ) ", tour[n][0], tour[n][1]);	printf("\n");}int sum_sequence(int array[], int count){	int sum = 0;	for (int i = 0; i < count; i++)		sum += array[i];	return (sum);}/******************************************************************************/class Ant{	protected:		int START_CITY, CURRENT_CITY;		int ALLOWED[N];		Tour CURRENT_TOUR;		int CURRENT_TOUR_INDEX;	public:	        inline Ant(int start_city) 		{			START_CITY = start_city;		}		inline void moveTo(int to_city)		{			ALLOWED[to_city] = 0;			CURRENT_TOUR[CURRENT_TOUR_INDEX][0] = CURRENT_CITY;			CURRENT_TOUR[CURRENT_TOUR_INDEX][1] = to_city;			CURRENT_TOUR_INDEX++;			CURRENT_CITY = to_city;		}};class NNAnt : Ant{	public:	        inline NNAnt(int start_city): Ant(start_city) { };		inline int choose()		{			double best_length = (double)N * max_dist();			int best_choose = -1;				for (int j = 0; j < N; j++)			{				if ((ALLOWED[j] == 1) && (D[CURRENT_CITY][j] < best_length))				{					best_choose = j;					best_length = D[CURRENT_CITY][j];				}			}			return best_choose;		}		inline Tour *search()		{			CURRENT_CITY = START_CITY;			CURRENT_TOUR_INDEX = 0;			for (int i = 0; i < N; i++)				ALLOWED[i] = 1;			ALLOWED[CURRENT_CITY] = 0;			while (sum_sequence(ALLOWED, N) > 0)				moveTo(choose());			ALLOWED[START_CITY] = 1;			moveTo(START_CITY);			return &CURRENT_TOUR;		}};class AntColonySystem;class ACSAnt : Ant{	private:		AntColonySystem *ACS;			public:	        ACSAnt(AntColonySystem *acs, int start_city): Ant(start_city)		{			ACS = acs;		}		inline int choose();		inline Tour *search();};class AntColonySystem{    private:		double ALPHA, BETA, RHO, TAU0;		doubleMatrix TAU, dTAU;		static const int M = 420;		ACSAnt *ANTS[M];			public:		double Q0;        AntColonySystem(double alpha, double beta, double rho, double q0);		inline double calc_tau0();		inline void init_tau_by_value(double value);		inline void init_tau_by_matrix(doubleMatrix matrix);		inline void	init_uniform();		inline void	init_random();		inline void	init_randomMOAPC();		inline double ETA(int i, int j);		inline double transition(int i, int j);		inline double sum_transition(int i, int allowed[]);		inline void local_update_rule(int i, int j);		inline void	clear_global_update();		inline void add_global_update(Tour tour, double length);		inline void global_update_rule();		inline doubleMatrix *get_tau();		inline Tour *search(int T);};		inline int ACSAnt::choose(){	double q = rand() / (double)RAND_MAX;		if (q <= ACS->Q0)	{		double best_value = -1.0;		int best_choose = -1;		for (int j = 0; j < N; j++)		{			if ((ALLOWED[j] == 1) && 			(ACS->transition(CURRENT_CITY, j) > best_value))			{				best_choose = j;				best_value = ACS->transition(CURRENT_CITY, j);			}		}		return best_choose;	}	double sum = ACS->sum_transition(CURRENT_CITY, ALLOWED);	double p = rand() / (double)RAND_MAX;	double p_j = 0.0;				for (int j = 0; j < N; j++)	{		if (ALLOWED[j] == 1) p_j += ACS->transition(CURRENT_CITY, j) / sum;		if ((p < p_j) && (ALLOWED[j] == 1))			return j;	}	return -1;}inline Tour *ACSAnt::search(){	CURRENT_CITY = START_CITY;	CURRENT_TOUR_INDEX = 0;	for (int i = 0; i < N; i++)		ALLOWED[i] = 1;	ALLOWED[CURRENT_CITY] = 0;	while (sum_sequence(ALLOWED, N) > 0)	{		int LAST_CITY = CURRENT_CITY;		moveTo(choose());		ACS->local_update_rule(LAST_CITY, CURRENT_CITY);	}	ALLOWED[START_CITY] = 1;	ACS->local_update_rule(CURRENT_CITY, START_CITY);	moveTo(START_CITY);	return &CURRENT_TOUR;}/******************************************************************************/		AntColonySystem::AntColonySystem(double alpha, double beta, double rho, double q0){	ALPHA = alpha;	BETA = beta;	RHO = rho;	Q0 = q0;}inline double AntColonySystem::calc_tau0(){	double best_length = (double)N * max_dist();		for (int n = 0; n < N; n++)	{		NNAnt *nnANT = new NNAnt(n);		Tour tour;		tour = *(nnANT->search());		double tour_length = calc_length(tour);		if (tour_length < best_length)			best_length = tour_length;		delete nnANT;	}	return 1.0 / ((double)N * best_length);}inline void AntColonySystem::init_tau_by_value(double value)	{	TAU0 = value;	for (int i = 0; i < N; i++)		for (int j = 0; j < N; j++)			TAU[i][j] = TAU0;}inline void AntColonySystem::init_tau_by_matrix(doubleMatrix matrix)	{	for (int i = 0; i < N; i++)		for (int j = 0; j < N; j++)			TAU[i][j] = matrix[i][j];}inline void	AntColonySystem::init_uniform(){	// uniformly distributed	for (int k = 0; k < M; k++)		ANTS[k] = new ACSAnt(this, (k % N));}inline void	AntColonySystem::init_random(){		// randomly distributed	for (int k = 0; k < M; k++)		ANTS[k] = new ACSAnt(this, (int)((double)N * (rand() / (double)RAND_MAX)));}inline void	AntColonySystem::init_randomMOAPC(){		// randomly distributed with MOAPC (most one ant per city)	bool MOAPCarray[N];	assert(M <= N);		for (int n = 0; n < N; n++)		MOAPCarray[n] = false;			for (int k = 0; k < M; k++)	{		int c;		do		{			c = (int)((double)N * (rand() / (double)RAND_MAX));		}		while (MOAPCarray[c]);				MOAPCarray[c] = true;		ANTS[k] = new ACSAnt(this, c);	}}inline double AntColonySystem::ETA(int i, int j){	return ( 1.0 / D[i][j] );}		inline double AntColonySystem::transition(int i, int j)	{	if (i != j)		return ( TAU[i][j] * pow( ETA(i, j), BETA ) );	else		return(0.0);}	inline double AntColonySystem::sum_transition(int i, int allowed[]){	double sum = 0.0;	for (int j = 0; j < N; j++) 		sum += ((double)allowed[j] * transition(i, j));	return (sum);}inline void AntColonySystem::local_update_rule(int i, int j){	TAU[i][j] = (1.0 - RHO) * TAU[i][j] + RHO * TAU0;	// symmetric TSP	TAU[j][i] = TAU[i][j];}	inline void	AntColonySystem::clear_global_update(){	for (int i = 0; i < N; i++)		for (int j = 0; j < N; j++)			dTAU[i][j] = 0.0;}				inline void AntColonySystem::add_global_update(Tour tour, double length){	for (int n = 0; n < N; n++)	{		int i = tour[n][0];		int j = tour[n][1];		dTAU[i][j] += (1.0 / length);		// symmetric TSP		dTAU[j][i] += (1.0 / length);	}}inline void AntColonySystem::global_update_rule(){	for (int i = 0; i < N; i++)		for (int j = 0; j < N; j++)			TAU[i][j] = (1.0 - ALPHA) * TAU[i][j] + ALPHA * dTAU[i][j];}inline doubleMatrix *AntColonySystem::get_tau(){	return &TAU;}	inline Tour *AntColonySystem::search(int T){	Tour best_tour, tour;	double best_length = (double)N * max_dist(), tour_length;	clear_global_update();		// do T iterations of ACS algorithm	int t;	for (t = 0; t < T; t++)	{			for (int k = 0; k < M; k++)		{			tour = *(ANTS[k]->search());			tour_length = calc_length(tour);			if (tour_length < best_length)			{				best_tour = tour;				best_length = tour_length;				clear_global_update();				add_global_update(tour, tour_length);				//printf("[%d / %d]: %lf \n", t, T, tour_length);			}		}		global_update_rule();	}			//printf("[%d/%d] best tour (length = %f):\n", t, T, best_length);	//print_tour(best_tour);	//printf("[%d/%d] iterations done\n", t, T);	printf("%f\n", best_length);	return (&best_tour);}int main(int argc, char* argv[]){	// PRNG initalisieren	time_t timer;	time(&timer);	pid_t pid = getpid() + getppid();		unsigned long seed = (timer * pid);	if (seed == 0) 	{	    time(&timer);	    seed = 7 * timer * pid;	    if (seed == 0) seed = pid; else seed = seed % 56000;	} else seed = seed % 56000;	srand((unsigned int)seed);		// EUC2D	calc_dist();		// Ant Colony System			AntColonySystem *acs = new AntColonySystem(0.1, 2.0, 0.1, 0.9);	double tau0 = acs->calc_tau0();	acs->init_tau_by_value(tau0);	acs->init_uniform();	acs->search(1000);		return(0);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -