📄 snfcn.m
字号:
%%%%%%%%%% start of function snfcn.m %%%%%%%%%%%% Function to evalute the equations whose zero will be found % using the bisection method%% Written by: Roseanna M. Neupauer% Modification Date: April 24, 1999%% function f=snfcn(beta,u,sn,nearzero,large);% % Inputs% beta estimation of the ith beta % u ith upper value% sn ith expected value% nearzero value below which the asymptotic % approximation to zero is used% large value above which the asymptotic % approximation to infinity%% Outputs% f value of function whos zero will be found % using the bisection methodfunction f=snfcn(beta,u,sn,nearzero,large);bu=beta*u;if bu == 0 % Equation 3.6 f=sn-u/2;elseif (abs(bu) < nearzero) % Equation 3.7 f=sn-(u*(12.-8.*bu+3.*bu^2)/(24.-12.*bu+4.*bu^2-bu^3));elseif bu < -large % page 56 f=sn-(u+1/beta);elseif (bu > large) % page 57 f=sn-1/beta;else % Equation 3.5 and Equation A.12 f=sn-((exp(-bu).*(-bu-1)+1)/(beta.*(1-exp(-bu))));end return%%%%%%%%%% end of function snfcn.m %%%%%%%%%%
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -