📄 examp.m
字号:
%% This script runs the Backus-Gilbert computations for %clear%% The data.%d=[5.973; 8.02];sigma=[0.0005; 0.005];Re=6370.8;%% Get the normalizing constraint.%q=[1.083221147; 1.757951474];%% First, try ri=0.15;%%% Get the H matrix. The following formulas for the integrals were done with% Maple.%ri=1000/Re;H=zeros(2,2);H(1,1)=1.508616069 - 3.520104161*ri + 2.112062496*ri^2;H(1,2)=3.173750352 - 7.140938293*ri + 4.080536168*ri^2;H(2,1)=H(1,2);H(2,2)=7.023621326 - 15.45196692*ri + 8.584426066*ri^2;%% Get the c coeffcients.%[c,lambda]=quadlin(H,q',[1.0]);fprintf('Coefficients for ri=%f (%f km) are %f, %f\n',[ri,ri*Re,c(1),c(2)]);fprintf('Estimate for ri=%f is %f \n',[ri,c'*d]);fprintf('Standard deviation for ri=%f is %f\n',[ri,sqrt(c(1)^2*sigma(1)^2+c(2)^2*sigma(2)^2)]);%% Plot the averaging kernel.%figure(1);bookfontsr=(0.0:0.02:1.0)';a=c(1)*g1(r)+c(2)*g2(r);plot(r*Re,a,'k');xlabel('radius (km)');ylabel('A(r)');H=text(100,1,'r=1000 km');set(H,'FontSize',18); hold on%% Finally, try ri=0.8%%% Get the H matrix. The following formulas for the integrals were done with% Maple.%ri=5000/Re;H=zeros(2,2);H(1,1)=1.508616069 - 3.520104161*ri + 2.112062496*ri^2;H(1,2)=3.173750352 - 7.140938293*ri + 4.080536168*ri^2;H(2,1)=H(1,2);H(2,2)=7.023621326 - 15.45196692*ri + 8.584426066*ri^2;%% Get the c coeffcients.%[c,lambda]=quadlin(H,q',[1.0]);fprintf('Coefficients for ri=%f (%f km) are %f, %f\n',[ri,ri*Re,c(1),c(2)]);fprintf('Estimate for ri=%f is %f \n',[ri,c'*d]);fprintf('Standard deviation for ri=%f is %f\n',[ri,sqrt(c(1)^2*sigma(1)^2+c(2)^2*sigma(2)^2)]);%% Plot the averaging kernel.%r=(0.0:0.02:1.0)';a=c(1)*g1(r)+c(2)*g2(r);plot(r*Re,a,'k');H=text(3000,0.55,'r=5000 km');set(H,'FontSize',18); %% Print out the results.%%print -deps akernels.eps
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -