⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pnu.m

📁 这是在网上下的一个东东
💻 M
字号:
function [X,rho,eta,F] = pnu(A,L,W,b,k,nu,sm) %PNU "Preconditioned" version of Brakhage's nu-method. % % [X,rho,eta,F] = pnu(A,L,W,b,k,nu,sm) % % Performs k steps of a `preconditioned' version of Brakhage's % nu-method for the problem %    min || (A*L_p) x - b || , % where L_p is the A-weighted generalized inverse of L.  Notice % that the matrix W holding a basis for the null space of L must % also be specified. % % The routine returns all k solutions, stored as columns of % the matrix X.  The solution seminorm and residual norm are returned % in eta and rho, respectively. % % If nu is not specified, nu = .5 is the default value, which gives % the Chebychev method of Nemirovskii and Polyak. % % If the generalized singular values sm of (A,L) are also provided, % then pnu computes the filter factors associated with each step and % stores them columnwise in the matrix F.  % Reference: H. Brakhage, "On ill-posed problems and the method of % conjugate gradients"; in H. W. Engl & G. W. Groetsch, "Inverse and % Ill-Posed Problems", Academic Press, 1987.   % Martin Hanke, Institut fuer Praktische Mathematik, Universitaet % Karlsruhe and Per Christian Hansen, IMM, April 8, 2001.  % Set parameters. l_steps = 3;      % Number of Lanczos steps for est. of || A*L_p ||. fudge   = 0.99;   % Scale A and b by fudge/|| A*L_p ||. fudge_thr = 1e-4; % Used to prevent filter factors from exploding.   % Initialization. if (k < 1), error('Number of steps k must be positive'), end if (nargin==5), nu = .5; end [m,n] = size(A); [p,n1] = size(L); X = zeros(n,k); if (nargout > 1)   rho = zeros(k,1); eta = rho; end; if (nargin==7)   F = zeros(n,k); Fd = zeros(n,1); s = (sm(:,1)./sm(:,2)).^2; end V = zeros(p,l_steps); B = zeros(l_steps+1,l_steps); v = zeros(p,1); eta = zeros(l_steps+1,1);   % Prepare for computations with L_p. [NAA,x_0] = pinit(W,A,b); x1 = x_0;  % Compute a rough estimate of || A*L_p || by means of a few % steps of Lanczos bidiagonalization, and scale A and b such % that || A*L_p || is slightly less than one. b_0 = b - A*x_0; beta = norm(b_0); u = b_0/beta; for i=1:l_steps   r = ltsolve(L,(u'*A)',W,NAA) - beta*v;   % A'*u   alpha = norm(r); v = r/alpha;   B(i,i) = alpha; V(:,i) = v;   p = A*lsolve(L,v,W,NAA) - alpha*u;   beta = norm(p); u = p/beta;   B(i+1,i) = beta; end scale = fudge/norm(B); A = scale*A; b = scale*b; if (nargin==7), s = scale^2*s; end  % Prepare for iteration. x  = x_0; z  = -scale*b_0; r  = A'*z; d1 = ltsolve(L,r); d  = lsolve(L,d1,W,NAA); if (nargout>2), x1 = L*x_0; end  % Iterate. for j=0:k-1       % Updates.   alpha = 4*(j+nu)*(j+nu+0.5)/(j+2*nu)/(j+2*nu+0.5);   beta  = -(j+nu)*(j+1)*(j+0.5)/(j+2*nu)/(j+2*nu+0.5)/(j+nu+1);   Ad  = A*d; AAd = (Ad'*A)';   % A'*Ad;   x   = x - alpha*d;   r   = r - alpha*AAd;   rr1 = ltsolve(L,r);   rr  = lsolve(L,rr1,W,NAA);   d   = rr - beta*d;   X(:,j+1) = x;   if (nargout>1 )     z = z - alpha*Ad; rho(j+1) = norm(z)/scale;   end;   if (nargout>2)     x1 = x1 - alpha*d1; d1 = rr1 - beta*d1;     eta(j+1) = norm(x1);   end;      % Filter factors.   if (nargin==7)     if (j==0)       F(:,1) = alpha*s;       Fd = s - s.*F(:,1) + beta*s;     else       F(:,j+1) = F(:,j) + alpha*Fd;       Fd = s - s.*F(:,j+1) + beta*Fd;     end     if (j > 1)       f = find(abs(F(:,j)-1) < fudge_thr & abs(F(:,j-1)-1) < fudge_thr);       if (length(f) > 0), F(f,j+1) = ones(length(f),1); end     end   end  end 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -