⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 maxent.m

📁 这是在网上下的一个东东
💻 M
字号:
function [x_lambda,rho,eta,data,X] = maxent(A,b,lambda,w,x0) %MAXENT Maximum entropy regularization. % % [x_lambda,rho,eta] = maxent(A,b,lambda,w,x0) % % Maximum entropy regularization: %    min { || A x - b ||^2 + lambda^2*x'*log(diag(w)*x) } , % where -x'*log(diag(w)*x) is the entropy of the solution x. % If no weights w are specified, unit weights are used. % % If lambda is a vector, then x_lambda is a matrix such that %    x_lambda = [x_lambda(1), x_lambda(2), ... ] . % % This routine uses a nonlinear conjugate gradient algorithm with "soft" % line search and a step-length control that insures a positive solution. % If the starting vector x0 is not specified, then the default is %    x0 = norm(b)/norm(A,1)*ones(n,1) .  % Per Christian Hansen, IMM and Tommy Elfving, Dept. of Mathematics, % Linkoping University, 06/10/92.  % Reference: R. Fletcher, "Practical Methods for Optimization", % Second Edition, Wiley, Chichester, 1987.  % Set defaults. flat = 1e-3;     % Measures a flat minimum. flatrange = 10;  % How many iterations before a minimum is considered flat. maxit = 150;     % Maximum number of CG iterations; minstep = 1e-12; % Determines the accuracy of x_lambda. sigma = 0.5;     % Threshold used in descent test. tau0 = 1e-3;     % Initial threshold used in secant root finder.  % Initialization. [m,n] = size(A); x_lambda = zeros(n,length(lambda)); F = zeros(maxit,1); if (min(lambda) <= 0)   error('Regularization parameter lambda must be positive') end if (nargin ==3), w  = ones(n,1); end if (nargin < 5), x0 = ones(n,1); end  % Treat each lambda separately. for j=1:length(lambda);    % Prepare for nonlinear CG iteration.   l2 = lambda(j)^2;   x  = x0; Ax = A*x;   g  = 2*A'*(Ax - b) + l2*(1 + log(w.*x));   p  = -g;   r  = Ax - b;    % Start the nonlinear CG iteration here.   delta_x = x; dF = 1; it = 0; phi0 = p'*g;   while (norm(delta_x) > minstep*norm(x) & dF > flat & it < maxit & phi0 < 0)     it = it + 1;      % Compute some CG quantities.     Ap = A*p; gamma = Ap'*Ap; v = A'*Ap;      % Determine the steplength alpha by "soft" line search in which     % the minimum of phi(alpha) = p'*g(x + alpha*p) is determined to     % a certain "soft" tolerance.     % First compute initial parameters for the root finder.     alpha_left = 0; phi_left = phi0;     if (min(p) >= 0)       alpha_right = -phi0/(2*gamma);       h = 1 + alpha_right*p./x;     else       % Step-length control to insure a positive x + alpha*p.       I = find(p < 0);       alpha_right = min(-x(I)./p(I));       h = 1 + alpha_right*p./x; delta = eps;       while (min(h) <= 0)         alpha_right = alpha_right*(1 - delta);         h = 1 + alpha_right*p./x;         delta = delta*2;       end     end     z = log(h);     phi_right = phi0 + 2*alpha_right*gamma + l2*p'*z;     alpha = alpha_right; phi = phi_right;      if (phi_right <= 0)        % Special treatment of the case when phi(alpha_right) = 0.       z = log(1 + alpha*p./x);       g_new = g + l2*z + 2*alpha*v; t = g_new'*g_new;       beta = (t - g'*g_new)/(phi - phi0);      else        % The regular case: improve the steplength alpha iteratively       % until the new step is a descent step.       t = 1; u = 1; tau = tau0;       while (u > -sigma*t)          % Use the secant method to improve the root of phi(alpha) = 0         % to within an accuracy determined by tau.         while (abs(phi/phi0) > tau)           alpha = (alpha_left*phi_right - alpha_right*phi_left)/...                   (phi_right - phi_left);           z = log(1 + alpha*p./x);           phi = phi0 + 2*alpha*gamma + l2*p'*z;           if (phi > 0)             alpha_right = alpha; phi_right = phi;           else             alpha_left  = alpha; phi_left  = phi;           end         end          % To check the descent step, compute u = p'*g_new and         % t = norm(g_new)^2, where g_new is the gradient at x + alpha*p.         g_new = g + l2*z + 2*alpha*v; t = g_new'*g_new;         beta = (t - g'*g_new)/(phi - phi0);         u = -t + beta*phi;         tau = tau/10;        end  % End of improvement iteration.      end  % End of regular case.          % Update the iteration vectors.     g = g_new; delta_x = alpha*p;     x = x + delta_x;     p = -g + beta*p;     r = r + alpha*Ap;     phi0 = p'*g;      % Compute some norms and check for flat minimum.     rho(j,1) = norm(r); eta(j,1) = x'*log(w.*x);     F(it) = rho(j,1)^2 + l2*eta(j,1);     if (it <= flatrange)       dF = 1;     else       dF = abs(F(it) - F(it-flatrange))/abs(F(it));     end      data(it,:) = [F(it),norm(delta_x),norm(g)];     X(:,it) = x;    end  % End of iteration for x_lambda(j).    x_lambda(:,j) = x;  end 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -