📄 bidiag.m
字号:
function [U,B,V] = bidiag(A) %BIDIAG Bidiagonalization of an m-times-n matrix with m >= n. % % B = bidiag(A) % [U,B,V] = bidiag(A) % % Computes the bidiagonalization of the m-times-n matrix A with m >= n: % A = U*B*V' , % where B is an upper bidiagonal n-times-n matrix, and U and V have % orthogonal columns. The matrix B is stored as a sparse matrix. % Reference: L. Elden, "Algorithms for regularization of ill- % conditioned least-squares problems", BIT 17 (1977), 134-145. % Per Christian Hansen, IMM, Sept. 13, 2001. % Initialization. [m,n] = size(A); if (m < n), error('Illegal dimensions of A'), end B = sparse(n,n); if (nargout> 1), U = [eye(n);zeros(m-n,n)]; betaU = zeros(n,1); end if (nargout==3), V = eye(n); betaV = zeros(n,1); end % Bidiagonalization; save Householder quantities. if (m > n), k_last = n; else k_last = n-1; end for k=1:k_last [B(k,k),beta,A(k:m,k)] = gen_hh(A(k:m,k)); if (k < n), A(k:m,k+1:n) = app_hh(A(k:m,k+1:n),beta,A(k:m,k)); end if (nargout>1), betaU(k) = beta; end if (k < n-1) [B(k,k+1),beta,v] = gen_hh(A(k,k+1:n).'); A(k,k+1:n) = v.'; A(k+1:m,k+1:n) = app_hh(A(k+1:m,k+1:n)',beta,A(k,k+1:n)')'; if (nargout==3), betaV(k) = beta;, end elseif (k == n-1) B(n-1,n) = A(n-1,n); end end % Save bottom element if A is square. if (k_last < n), B(n,n) = A(n,n); end % Compute U if wanted. if (nargout>1) for k=k_last:-1:1 U(k:m,k:n) = app_hh(U(k:m,k:n),betaU(k),A(k:m,k)); end end % Compute V if wanted. if (nargout==3) for k=n-2:-1:1 V(k+1:n,k:n) = app_hh(V(k+1:n,k:n),betaV(k),A(k,k+1:n)'); end end if (nargout < 2), U = B; end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -