⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tgsvd.m

📁 这是在网上下的一个东东
💻 M
字号:
function [x_k,rho,eta] = tgsvd(U,sm,X,b,k) %TGSVD Truncated GSVD regularization. % % [x_k,rho,eta] = tgsvd(U,sm,X,b,k) ,  sm = [sigma,mu] % % Computes the truncated GSVD solution %            [ 0              0                 0    ] %    x_k = X*[ 0  inv(diag(sigma(p-k+1:p)))     0    ]*U'*b . %            [ 0              0             eye(n-p) ] % If k is a vector, then x_k is a matrix such that %    x_k = [ x_k(1), x_k(2), ... ] . % % The solution seminorm and the residual norm are returned in eta and rho.  % Reference: P. C. Hansen, "Regularization, GSVD and truncated GSVD", % BIT 29 (1989), 491-504.  % Per Christian Hansen, IMM, April 14, 2003.  % Initialization.m = size(U,1);n = size(X,1);p = size(sm,1);lk = length(k); if (min(k)<0 | max(k)>p)   error('Illegal truncation parameter k') end x_k = zeros(n,lk); eta = zeros(lk,1); rho = zeros(lk,1); beta = U(:,1:p)'*b; xi = beta(1:p)./sm(:,1);if (nargout==3), mxi = sm(:,2).*xi; endif (m>=n)      % The overdetermined or square case. Treat each k separately.   if (p==n)     x_0 = zeros(n,1);   else     x_0 = X(:,p+1:n)*(U(:,p+1:n)'*b);   end   for j=1:lk     i = k(j); pi1 = p-i+1;     if(i==0)       x_k(:,j) = x_0;     else       x_k(:,j) = X(:,pi1:p)*xi(pi1:p) + x_0;     end     if (nargout>1), rho(j) = norm(beta(1:p-i)); end     if (nargout==3), eta(j) = norm(mxi(pi1:p)); end   end    if (nargout > 1 & size(U,1) > p)     rho = sqrt(rho.^2 + norm(b - U(:,1:p)*beta)^2);   endelse      % The underdetermined case. Treat each k separately.   if (p==m)     x_0 = zeros(n,1);   else     x_0 = X(:,p+1:m)*(U(:,p+1:m)'*b);  end   for j=1:lk     i = k(j); pi1 = p-i+1;     if(i==0)       x_k(:,j) = x_0;     else       x_k(:,j) = X(:,pi1:p)*xi(pi1:p) + x_0;     end     if (nargout>1), rho(j) = norm(beta(1:p-i)); end     if (nargout==3), eta(j) = norm(mxi(pi1:p)); end   end end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -