📄 parallax.m
字号:
function [A,b] = parallax(n) %PARALLAX Stellar parallax problem with 28 fixed, real observations. % % [A,b] = parallax(n) % % Stellar parallax problem with 28 fixed, real observations. % % The underlying problem is a Fredholm integral equation of the % first kind with kernel % K(s,t) = (1/sigma*sqrt(2*pi))*exp(-0.5*((s-t)/sigma)^2) , % and it is discretized by means of a Galerkin method with n % orthonormal basis functions. The right-hand side consists of % a measured distribution function of stellar parallaxes, and its % length is fixed, m = 26. The exact solution, which represents % the true distribution of stellar parallaxes, in not known. % Reference: W. M. Smart, "Stellar Dynamics", Cambridge % University Press, 1938; p. 30. % Discretized by Galerkin method with orthonormal box functions; % 2-D integration is done by means of the computational molecule: % 1 4 1 % 4 16 4 % 1 4 1 % Per Christian Hansen, IMM, 09/16/92. % Initialization. a = 0; b = 0.1; m = 26; sigma = 0.014234; hs = 0.130/m; hx = (b-a)/n; hsh = hs/2; hxh = hx/2; ss = (-0.03 + [0:m-1]'*hs)*ones(1,n); xx = ones(m,1)*(a + [0:n-1]*hx); % Set up the matrix. A = 16*exp(-0.5*((ss+hsh - xx-hxh)/sigma).^2); A = A + 4*(exp(-0.5*((ss+hsh - xx )/sigma).^2) + ... exp(-0.5*((ss+hsh - xx-hx )/sigma).^2) + ... exp(-0.5*((ss - xx-hxh)/sigma).^2) + ... exp(-0.5*((ss+hs - xx-hxh)/sigma).^2)); A = A + (exp(-0.5*((ss - xx )/sigma).^2) + ... exp(-0.5*((ss+hs - xx )/sigma).^2) + ... exp(-0.5*((ss - xx-hx )/sigma).^2) + ... exp(-0.5*((ss+hs - xx-hx )/sigma).^2)); A = sqrt(hs*hx)/(36*sigma*sqrt(2*pi))*A; % Set up the normalized right-hand side. b = [3;7;7;17;27;39;46;51;56;50;43;45;43;32;33;29;... 21;12;17;13;15;12;6;6;5;5]/(sqrt(hs)*640);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -