📄 plsqr_b.m
字号:
function [X,rho,eta,F] = plsqr_b(A,L,W,b,k,reorth,sm) %PLSQR_B "Preconditioned" version of the LSQR Lanczos bidiagonalization algorithm. % % [X,rho,eta,F] = plsqr_b(A,L,W,b,k,reorth,sm) % % Performs k steps of the `preconditioned' LSQR Lanczos % bidiagonalization algorithm applied to the system % min || (A*L_p) x - b || , % where L_p is the A-weighted generalized inverse of L. Notice % that the matrix W holding a basis for the null space of L must % also be specified. % % The routine returns all k solutions, stored as columns of % the matrix X. The solution seminorm and the residual norm are % returned in eta and rho, respectively. % % If the generalized singular values sm of (A,L) are also provided, % then glsqr computes the filter factors associated with each step % and stores them columnwise in the matrix F. % % Reorthogonalization is controlled by means of reorth: % reorth = 0 : no reorthogonalization (default), % reorth = 1 : reorthogonalization by means of MGS. % References: C. C. Paige & M. A. Saunders, "LSQR: an algorithm for % sparse linear equations and sparse least squares", ACM Trans. % Math. Software 8 (1982), 43-71. % P. C. Hansen, "Rank-Deficient and Discrete Ill-Posed Problems. % Numerical Aspects of Linear Inversion", SIAM, Philadelphia, 1997. % Per Christian Hansen, IMM, Sept. 13, 2001. % The fudge threshold is used to prevent filter factors from exploding. fudge_thr = 1e-4; % Initialization if (k < 1), error('Number of steps k must be positive'), end if (nargin==5), reorth = 0; end if (nargout==4 & nargin<7), error('Too few input arguments'), end [m,n] = size(A); X = zeros(n,k); [pp,n1] = size(L); if (n1 ~= n | m < n | n < pp) error('Incorrect dimensions of A and L') end if (reorth==0) UV = 0; elseif (reorth==1) if (k>=n), error('No. of iterations must satisfy k < n'), end U = zeros(m,k); V = zeros(pp,k); UV = 1; else error('Illegal reorth') end if (nargout > 1) eta = zeros(k,1); rho = eta; c2 = -1; s2 = 0; xnorm = 0; z = 0; end if (nargin==7) [ls,ms] = size(sm); F = zeros(ls,k); Fv = zeros(ls,1); Fw = Fv; s = (sm(:,1)./sm(:,2)).^2; end % Prepare for computations with L_p. [NAA,x_0] = pinit(W,A,b); % By subtracting the component A*x_0 from b we insure that % the corrent residual norms are computed. b = b - A*x_0; % Prepare for LSQR iteration. v = zeros(pp,1); x = v; beta = norm(b); if (beta==0), error('Right-hand side must be nonzero'), end u = b/beta; if (UV), U(:,1) = u; end r = ltsolve(L,(u'*A)',W,NAA); alpha = norm(r); % A'*u v = r/alpha; if (UV), V(:,1) = v; end phi_bar = beta; rho_bar = alpha; w = v; if (nargin==7), Fv = s/(alpha*beta); Fw = Fv; end % Perform Lanczos bidiagonalization with/without reorthogonalization. for i=2:k+1 alpha_old = alpha; beta_old = beta; % Compute (A*L_p)*v - alpha*u. p = A*lsolve(L,v,W,NAA) - alpha*u; if (reorth==0) beta = norm(p); u = p/beta; else for j=1:i-1, p = p - (U(:,j)'*p)*U(:,j); end beta = norm(p); u = p/beta; end % Compute L_p'*A'*u - beta*v. r = ltsolve(L,(u'*A)',W,NAA) - beta*v; % A'*u if (reorth==0) alpha = norm(r); v = r/alpha; else for j=1:i-1, r = r - (V(:,j)'*r)*V(:,j); end alpha = norm(r); v = r/alpha; end % Store U and V if necessary. if (UV), U(:,i) = u; V(:,i) = v; end % Construct and apply orthogonal transformation. rrho = pythag(rho_bar,beta); c1 = rho_bar/rrho; s1 = beta/rrho; theta = s1*alpha; rho_bar = -c1*alpha; phi = c1*phi_bar; phi_bar = s1*phi_bar; % Compute solution norm and residual norm if necessary; if (nargout > 1) delta = s2*rrho; gamma_bar = -c2*rrho; rhs = phi - delta*z; z_bar = rhs/gamma_bar; eta(i-1) = pythag(xnorm,z_bar); gamma = pythag(gamma_bar,theta); c2 = gamma_bar/gamma; s2 = theta/gamma; z = rhs/gamma; xnorm = pythag(xnorm,z); rho(i-1) = abs(phi_bar); end % If required, compute the filter factors. if (nargin==7) if (i==2) Fv_old = Fv; Fv = Fv.*(s - beta^2 - alpha_old^2)/(alpha*beta); F(:,i-1) = (phi/rrho)*Fw; else tmp = Fv; Fv = (Fv.*(s - beta^2 - alpha_old^2) - ... Fv_old*alpha_old*beta_old)/(alpha*beta); Fv_old = tmp; F(:,i-1) = F(:,i-2) + (phi/rrho)*Fw; end if (i > 3) f = find(abs(F(:,i-2)-1) < fudge_thr & abs(F(:,i-3)-1) < fudge_thr); if (length(f) > 0), F(f,i-1) = ones(length(f),1); end end Fw = Fv - (theta/rrho)*Fw; end % Update the solution. x = x + (phi/rrho)*w; w = v - (theta/rrho)*w; X(:,i-1) = lsolve(L,x,W,NAA) + x_0; end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -