⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lsqr_b.m

📁 这是在网上下的一个东东
💻 M
字号:
function [X,rho,eta,F] = lsqr_b(A,b,k,reorth,s) %LSQR_B Solution of least squares problems by Lanczos bidiagonalization. % % [X,rho,eta,F] = lsqr_b(A,b,k,reorth,s) % % Performs k steps of the LSQR Lanczos bidiagonalization algorithm % applied to the system %    min || A x - b || . % The routine returns all k solutions, stored as columns of % the matrix X.  The solution norm and residual norm are returned % in eta and rho, respectively. % % If the singular values s are also provided, lsqr computes the % filter factors associated with each step and stores them columnwise % in the matrix F. % % Reorthogonalization is controlled by means of reorth: %    reorth = 0 : no reorthogonalization (default), %    reorth = 1 : reorthogonalization by means of MGS. % Reference: C. C. Paige & M. A. Saunders, "LSQR: an algorithm for % sparse linear equations and sparse least squares", ACM Trans. % Math. Software 8 (1982), 43-71.  % Per Christian Hansen, IMM, April 8, 2001.  % The fudge threshold is used to prevent filter factors from exploding. fudge_thr = 1e-4;  % Initialization. if (k < 1), error('Number of steps k must be positive'), end if (nargin==3), reorth = 0; end if (nargout==4 & nargin<5), error('Too few input arguments'), end [m,n] = size(A); X = zeros(n,k); if (reorth==0)   UV = 0; elseif (reorth==1)   U = zeros(m,k); V = zeros(n,k); UV = 1;   if (k>=n), error('No. of iterations must satisfy k < n'), end else   error('Illegal reorth') end if (nargout > 1)   eta = zeros(k,1); rho = eta;   c2 = -1; s2 = 0; xnorm = 0; z = 0; end if (nargin==5)   ls = length(s);   F = zeros(ls,k); Fv = zeros(ls,1); Fw = Fv;   s = s.^2; end  % Prepare for LSQR iteration. v = zeros(n,1); x = v; beta = norm(b);  if (beta==0), error('Right-hand side must be nonzero'), end if (reorth==2)   [beta,HHbeta(1),HHU(:,1)] = gen_hh(b); end u = b/beta; if (UV), U(:,1) = u; end r = (u'*A)'; alpha = norm(r);   % A'*u; v = r/alpha; if (UV), V(:,1) = v; end phi_bar = beta; rho_bar = alpha; w = v; if (nargin==5), Fv = s/(alpha*beta); Fw = Fv; end  % Perform Lanczos bidiagonalization with/without reorthogonalization. for i=2:k+1    alpha_old = alpha; beta_old = beta;    % Compute A*v - alpha*u.   p = A*v - alpha*u;   if (reorth==0)     beta = norm(p); u = p/beta;   else    for j=1:i-1, p = p - (U(:,j)'*p)*U(:,j); end     beta = norm(p); u = p/beta;   end    % Compute A'*u - beta*v.   r = (u'*A)' - beta*v;   % A'*u   if (reorth==0)     alpha = norm(r); v = r/alpha;   else    for j=1:i-1, r = r - (V(:,j)'*r)*V(:,j); end     alpha = norm(r); v = r/alpha;   end    % Store U and V if necessary.   if (UV), U(:,i) = u; V(:,i) = v; end    % Construct and apply orthogonal transformation.   rrho = pythag(rho_bar,beta); c1 = rho_bar/rrho;   s1 = beta/rrho; theta = s1*alpha; rho_bar = -c1*alpha;   phi = c1*phi_bar; phi_bar = s1*phi_bar;    % Compute solution norm and residual norm if necessary;   if (nargout > 1)     delta = s2*rrho; gamma_bar = -c2*rrho; rhs = phi - delta*z;     z_bar = rhs/gamma_bar; eta(i-1) = pythag(xnorm,z_bar);     gamma = pythag(gamma_bar,theta);     c2 = gamma_bar/gamma; s2 = theta/gamma;     z = rhs/gamma; xnorm = pythag(xnorm,z);     rho(i-1) = abs(phi_bar);   end    % If required, compute the filter factors.   if (nargin==5)      if (i==2)       Fv_old = Fv;       Fv = Fv.*(s - beta^2 - alpha_old^2)/(alpha*beta);       F(:,i-1) = (phi/rrho)*Fw;     else       tmp = Fv;       Fv = (Fv.*(s - beta^2 - alpha_old^2) - ...                  Fv_old*alpha_old*beta_old)/(alpha*beta);       Fv_old = tmp;       F(:,i-1) = F(:,i-2) + (phi/rrho)*Fw;     end     if (i > 3)       f = find(abs(F(:,i-2)-1) < fudge_thr & abs(F(:,i-3)-1) < fudge_thr);       if (length(f) > 0), F(f,i-1) = ones(length(f),1); end     end     Fw = Fv - (theta/rrho)*Fw;    end    % Update the solution.   x = x + (phi/rrho)*w; w = v - (theta/rrho)*w;   X(:,i-1) = x;  end 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -