📄 mtsvd.m
字号:
function [x_k,rho,eta] = mtsvd(U,s,V,b,k,L) %MTSVD Modified truncated SVD regularization. % % [x_k,rho,eta] = mtsvd(U,s,V,b,k,L) % % Computes the modified TSVD solution: % x_k = V*[ xi_k ] . % [ xi_0 ] % Here, xi_k defines the usual TSVD solution % xi_k = inv(diag(s(1:k)))*U(:,1:k)'*b , % and xi_0 is chosen so as to minimize the seminorm || L x_k ||. % This leads to choosing xi_0 as follows: % xi_0 = -pinv(L*V(:,k+1:n))*L*V(:,1:k)*xi_k . % % The truncation parameter must satisfy k > n-p. % % If k is a vector, then x_k is a matrix such that % x_k = [ x_k(1), x_k(2), ... ] . % % The solution and residual norms are returned in eta and rho. % Reference: P. C. Hansen, T. Sekii & H. Shibahashi, "The modified % truncated-SVD method for regularization in general form", SIAM J. % Sci. Stat. Comput. 13 (1992), 1142-1150. % Per Christian Hansen, IMM, 12/22/95. % Initialization. [m,n1] = size(U); [p,n] = size(L); lk = length(k); kmin = min(k); if (kmin<n-p+1 | max(k)>n) error('Illegal truncation parameter k') end x_k = zeros(n,lk); beta = U(:,1:n)'*b; xi = beta./s; eta = zeros(lk,1); rho =zeros(lk,1); % Compute large enough QR factorization. [Q,R] = qr(L*V(:,n:-1:kmin+1),0); % Treat each k separately. for j=1:lk kj = k(j); xtsvd = V(:,1:kj)*xi(1:kj); if (kj==n) x_k(:,j) = xtsvd; else z = R(1:n-kj,1:n-kj)\(Q(:,1:n-kj)'*(L*xtsvd)); z = z(n-kj:-1:1); x_k(:,j) = xtsvd - V(:,kj+1:n)*z; end eta(j) = norm(x_k(:,j)); rho(j) = norm(beta(kj+1:n) + s(kj+1:n).*z); end if (nargout > 1 & m > n) rho = sqrt(rho.^2 + norm(b - U(:,1:n)*beta)^2); end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -