⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 l_corner.m

📁 这是在网上下的一个东东
💻 M
字号:
function [reg_c,rho_c,eta_c] = l_corner(rho,eta,reg_param,U,s,b,method,M) %L_CORNER Locate the "corner" of the L-curve. % % [reg_c,rho_c,eta_c] = %        l_corner(rho,eta,reg_param) %        l_corner(rho,eta,reg_param,U,s,b,method,M) %        l_corner(rho,eta,reg_param,U,sm,b,method,M) ,  sm = [sigma,mu] % % Locates the "corner" of the L-curve in log-log scale. % % It is assumed that corresponding values of || A x - b ||, || L x ||, % and the regularization parameter are stored in the arrays rho, eta, % and reg_param, respectively (such as the output from routine l_curve). % % If nargin = 3, then no particular method is assumed, and if % nargin = 2 then it is issumed that reg_param = 1:length(rho). % % If nargin >= 6, then the following methods are allowed: %    method = 'Tikh'  : Tikhonov regularization %    method = 'tsvd'  : truncated SVD or GSVD %    method = 'dsvd'  : damped SVD or GSVD %    method = 'mtsvd' : modified TSVD, % and if no method is specified, 'Tikh' is default.  If the Spline Toolbox % is not available, then only 'Tikh' and 'dsvd' can be used. % % An eighth argument M specifies an upper bound for eta, below which % the corner should be found.  % The following functions from the Spline Toolbox are needed if % method differs from 'Tikh' or 'dsvd': % fnder, ppbrk, ppmak, ppual, sp2pp, sorted, spbrk, spmak, sprpp.  % Per Christian Hansen, IMM, Dec. 12, 2002.  % Set default regularization method. if (nargin <= 3)   method = 'none';   if (nargin==2), reg_param = [1:length(rho)]'; end else   if (nargin==6), method = 'Tikh'; end end  % Set threshold for skipping very small singular values in the % analysis of a discrete L-curve. s_thr = eps;  % Neglect singular values less than s_thr.  % Set default parameters for treatment of discrete L-curve. deg   = 2;  % Degree of local smooting polynomial. q     = 2;  % Half-width of local smoothing interval. orig = 2order = 4;  % Order of fitting 2-D spline curve.  % Initialization. if (length(rho) < order)   error('Too few data points for L-curve analysis') end if (nargin > 3)   [p,ps] = size(s); [m,n] = size(U);  beta = U'*b;  if (m>n), b0 = b - U*beta; end  if (ps==2)    s = s(p:-1:1,1)./s(p:-1:1,2);    U = U(:,p:-1:1);    beta = beta(p:-1:1);  end  xi = beta./s; end  % Restrict the analysis of the L-curve according to M (if specified). if (nargin==8)   index = find(eta < M);   rho = rho(index); eta = eta(index); reg_param = reg_param(index); end  if (strncmp(method,'Tikh',4) | strncmp(method,'tikh',4))    % The L-curve is differentiable; computation of curvature in   % log-log scale is easy.      % Compute g = - curvature of L-curve.   g = lcfun(reg_param,s,beta,xi);      % Locate the corner.  If the curvature is negative everywhere,   % then define the leftmost point of the L-curve as the corner.   [gmin,gi] = min(g);  reg_c = fminbnd('lcfun',...     reg_param(min(gi+1,length(g))),reg_param(max(gi-1,1)),...     optimset('Display','off'),s,beta,xi); % Minimizer.   kappa_max = - lcfun(reg_c,s,beta,xi); % Maximum curvature.    if (kappa_max < 0)     lr = length(rho);     reg_c = reg_param(lr); rho_c = rho(lr); eta_c = eta(lr);   else     f = (s.^2)./(s.^2 + reg_c^2);     eta_c = norm(f.*xi);     rho_c = norm((1-f).*beta);     if (m>n), rho_c = sqrt(rho_c^2 + norm(b0)^2); end   end elseif (strncmp(method,'tsvd',4) | strncmp(method,'tgsv',4) | ...         strncmp(method,'mtsv',4) | strncmp(method,'none',4))   % The L-curve is discrete and may include unwanted fine-grained   % corners.  Use local smoothing, followed by fitting a 2-D spline   % curve to the smoothed discrete L-curve.    % Check if the Spline Toolbox exists, otherwise return.   if (exist('splines')~=7)     error('The Spline Toolbox in not available so l_corner cannot be used')   end    % For TSVD, TGSVD, and MTSVD, restrict the analysis of the L-curve   % according to s_thr.   if (nargin > 3)     if (nargin==8)       % In case the bound M is in action.       s    = s(index,:);       beta = beta(index);       xi   = xi(index);     end     index = find(s > s_thr);     rho = rho(index); eta = eta(index); reg_param = reg_param(index);     s = s(index); beta = beta(index); xi = xi(index);   end    % Convert to logarithms.   lr = length(rho);   lrho = log(rho); leta = log(eta); slrho = lrho; sleta = leta;    % For all interior points k = q+1:length(rho)-q-1 on the discrete   % L-curve, perform local smoothing with a polynomial of degree deg   % to the points k-q:k+q.   v = [-q:q]'; A = zeros(2*q+1,deg+1); A(:,1) = ones(length(v),1);   for j = 2:deg+1, A(:,j) = A(:,j-1).*v; end   for k = q+1:lr-q-1     cr = A\lrho(k+v); slrho(k) = cr(1);     ce = A\leta(k+v); sleta(k) = ce(1);   end    % Fit a 2-D spline curve to the smoothed discrete L-curve.   sp = spmak([1:lr+order],[slrho';sleta']);   pp = ppbrk(sp2pp(sp),[4,lr+1]);    % Extract abscissa and ordinate splines and differentiate them.   % Compute as many function values as default in spleval.   P     = spleval(pp);  dpp   = fnder(pp);   D     = spleval(dpp); ddpp  = fnder(pp,2);   DD    = spleval(ddpp);   ppx   = P(1,:);       ppy   = P(2,:);   dppx  = D(1,:);       dppy  = D(2,:);   ddppx = DD(1,:);      ddppy = DD(2,:);    % Compute the corner of the discretized .spline curve via max. curvature.   % No need to refine this corner, since the final regularization   % parameter is discrete anyway.   % Define curvature = 0 where both dppx and dppy are zero.   k1    = dppx.*ddppy - ddppx.*dppy;   k2    = (dppx.^2 + dppy.^2).^(1.5);   I_nz  = find(k2 ~= 0);   kappa = zeros(1,length(dppx));   kappa(I_nz) = -k1(I_nz)./k2(I_nz);   [kmax,ikmax] = max(kappa);   x_corner = ppx(ikmax); y_corner = ppy(ikmax);    % Locate the point on the discrete L-curve which is closest to the   % corner of the spline curve.  Prefer a point below and to the   % left of the corner.  If the curvature is negative everywhere,   % then define the leftmost point of the L-curve as the corner.   if (kmax < 0)     reg_c = reg_param(lr); rho_c = rho(lr); eta_c = eta(lr);   else     index = find(lrho < x_corner & leta < y_corner);     if (length(index) > 0)       [dummy,rpi] = min((lrho(index)-x_corner).^2 + (leta(index)-y_corner).^2);       rpi = index(rpi);     else       [dummy,rpi] = min((lrho-x_corner).^2 + (leta-y_corner).^2);     end     reg_c = reg_param(rpi); rho_c = rho(rpi); eta_c = eta(rpi);   end  elseif (strncmp(method,'dsvd',4) | strncmp(method,'dgsv',4))    % The L-curve is differentiable; computation of curvature in   % log-log scale is easy.    % Compute g = - curvature of L-curve.   g = lcfun(reg_param,s,beta,xi,1);    % Locate the corner.  If the curvature is negative everywhere,   % then define the leftmost point of the L-curve as the corner.   [gmin,gi] = min(g);   reg_c = fminbnd('lcfun',...     reg_param(min(gi+1,length(g))),reg_param(max(gi-1,1)),...     optimset('Display','off'),s,beta,xi,1); % Minimizer.   kappa_max = - lcfun(reg_c,s,beta,xi,1); % Maximum curvature.    if (kappa_max < 0)     lr = length(rho);     reg_c = reg_param(lr); rho_c = rho(lr); eta_c = eta(lr);   else     f = s./(s + reg_c);     eta_c = norm(f.*xi);     rho_c = norm((1-f).*beta);     if (m>n), rho_c = sqrt(rho_c^2 + norm(b0)^2); end   end  else, error('Illegal method'), end 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -