⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cgstrs.c

📁 LU矩阵分解单机版最新版本
💻 C
字号:
/* * -- SuperLU routine (version 3.0) -- * Univ. of California Berkeley, Xerox Palo Alto Research Center, * and Lawrence Berkeley National Lab. * October 15, 2003 * *//*  Copyright (c) 1994 by Xerox Corporation.  All rights reserved.   THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY  EXPRESSED OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.   Permission is hereby granted to use or copy this program for any  purpose, provided the above notices are retained on all copies.  Permission to modify the code and to distribute modified code is  granted, provided the above notices are retained, and a notice that  the code was modified is included with the above copyright notice.*/#include "slu_cdefs.h"/*  * Function prototypes  */void cusolve(int, int, complex*, complex*);void clsolve(int, int, complex*, complex*);void cmatvec(int, int, int, complex*, complex*, complex*);voidcgstrs (trans_t trans, SuperMatrix *L, SuperMatrix *U,        int *perm_c, int *perm_r, SuperMatrix *B,        SuperLUStat_t *stat, int *info){/* * Purpose * ======= * * CGSTRS solves a system of linear equations A*X=B or A'*X=B * with A sparse and B dense, using the LU factorization computed by * CGSTRF. * * See supermatrix.h for the definition of 'SuperMatrix' structure. * * Arguments * ========= * * trans   (input) trans_t *          Specifies the form of the system of equations: *          = NOTRANS: A * X = B  (No transpose) *          = TRANS:   A'* X = B  (Transpose) *          = CONJ:    A**H * X = B  (Conjugate transpose) * * L       (input) SuperMatrix* *         The factor L from the factorization Pr*A*Pc=L*U as computed by *         cgstrf(). Use compressed row subscripts storage for supernodes, *         i.e., L has types: Stype = SLU_SC, Dtype = SLU_C, Mtype = SLU_TRLU. * * U       (input) SuperMatrix* *         The factor U from the factorization Pr*A*Pc=L*U as computed by *         cgstrf(). Use column-wise storage scheme, i.e., U has types: *         Stype = SLU_NC, Dtype = SLU_C, Mtype = SLU_TRU. * * perm_c  (input) int*, dimension (L->ncol) *	   Column permutation vector, which defines the  *         permutation matrix Pc; perm_c[i] = j means column i of A is  *         in position j in A*Pc. * * perm_r  (input) int*, dimension (L->nrow) *         Row permutation vector, which defines the permutation matrix Pr;  *         perm_r[i] = j means row i of A is in position j in Pr*A. * * B       (input/output) SuperMatrix* *         B has types: Stype = SLU_DN, Dtype = SLU_C, Mtype = SLU_GE. *         On entry, the right hand side matrix. *         On exit, the solution matrix if info = 0; * * stat     (output) SuperLUStat_t* *          Record the statistics on runtime and floating-point operation count. *          See util.h for the definition of 'SuperLUStat_t'. * * info    (output) int* * 	   = 0: successful exit *	   < 0: if info = -i, the i-th argument had an illegal value * */#ifdef _CRAY    _fcd ftcs1, ftcs2, ftcs3, ftcs4;#endif    int      incx = 1, incy = 1;#ifdef USE_VENDOR_BLAS    complex   alpha = {1.0, 0.0}, beta = {1.0, 0.0};    complex   *work_col;#endif    complex   temp_comp;    DNformat *Bstore;    complex   *Bmat;    SCformat *Lstore;    NCformat *Ustore;    complex   *Lval, *Uval;    int      fsupc, nrow, nsupr, nsupc, luptr, istart, irow;    int      i, j, k, iptr, jcol, n, ldb, nrhs;    complex   *work, *rhs_work, *soln;    flops_t  solve_ops;    void cprint_soln();    /* Test input parameters ... */    *info = 0;    Bstore = B->Store;    ldb = Bstore->lda;    nrhs = B->ncol;    if ( trans != NOTRANS && trans != TRANS && trans != CONJ ) *info = -1;    else if ( L->nrow != L->ncol || L->nrow < 0 ||	      L->Stype != SLU_SC || L->Dtype != SLU_C || L->Mtype != SLU_TRLU )	*info = -2;    else if ( U->nrow != U->ncol || U->nrow < 0 ||	      U->Stype != SLU_NC || U->Dtype != SLU_C || U->Mtype != SLU_TRU )	*info = -3;    else if ( ldb < SUPERLU_MAX(0, L->nrow) ||	      B->Stype != SLU_DN || B->Dtype != SLU_C || B->Mtype != SLU_GE )	*info = -6;    if ( *info ) {	i = -(*info);	xerbla_("cgstrs", &i);	return;    }    n = L->nrow;    work = complexCalloc(n * nrhs);    if ( !work ) ABORT("Malloc fails for local work[].");    soln = complexMalloc(n);    if ( !soln ) ABORT("Malloc fails for local soln[].");    Bmat = Bstore->nzval;    Lstore = L->Store;    Lval = Lstore->nzval;    Ustore = U->Store;    Uval = Ustore->nzval;    solve_ops = 0;        if ( trans == NOTRANS ) {	/* Permute right hand sides to form Pr*B */	for (i = 0; i < nrhs; i++) {	    rhs_work = &Bmat[i*ldb];	    for (k = 0; k < n; k++) soln[perm_r[k]] = rhs_work[k];	    for (k = 0; k < n; k++) rhs_work[k] = soln[k];	}		/* Forward solve PLy=Pb. */	for (k = 0; k <= Lstore->nsuper; k++) {	    fsupc = L_FST_SUPC(k);	    istart = L_SUB_START(fsupc);	    nsupr = L_SUB_START(fsupc+1) - istart;	    nsupc = L_FST_SUPC(k+1) - fsupc;	    nrow = nsupr - nsupc;	    solve_ops += 4 * nsupc * (nsupc - 1) * nrhs;	    solve_ops += 8 * nrow * nsupc * nrhs;	    	    if ( nsupc == 1 ) {		for (j = 0; j < nrhs; j++) {		    rhs_work = &Bmat[j*ldb];	    	    luptr = L_NZ_START(fsupc);		    for (iptr=istart+1; iptr < L_SUB_START(fsupc+1); iptr++){			irow = L_SUB(iptr);			++luptr;			cc_mult(&temp_comp, &rhs_work[fsupc], &Lval[luptr]);			c_sub(&rhs_work[irow], &rhs_work[irow], &temp_comp);		    }		}	    } else {	    	luptr = L_NZ_START(fsupc);#ifdef USE_VENDOR_BLAS#ifdef _CRAY		ftcs1 = _cptofcd("L", strlen("L"));		ftcs2 = _cptofcd("N", strlen("N"));		ftcs3 = _cptofcd("U", strlen("U"));		CTRSM( ftcs1, ftcs1, ftcs2, ftcs3, &nsupc, &nrhs, &alpha,		       &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb);				CGEMM( ftcs2, ftcs2, &nrow, &nrhs, &nsupc, &alpha, 			&Lval[luptr+nsupc], &nsupr, &Bmat[fsupc], &ldb, 			&beta, &work[0], &n );#else		ctrsm_("L", "L", "N", "U", &nsupc, &nrhs, &alpha,		       &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb);				cgemm_( "N", "N", &nrow, &nrhs, &nsupc, &alpha, 			&Lval[luptr+nsupc], &nsupr, &Bmat[fsupc], &ldb, 			&beta, &work[0], &n );#endif		for (j = 0; j < nrhs; j++) {		    rhs_work = &Bmat[j*ldb];		    work_col = &work[j*n];		    iptr = istart + nsupc;		    for (i = 0; i < nrow; i++) {			irow = L_SUB(iptr);			c_sub(&rhs_work[irow], &rhs_work[irow], &work_col[i]);			work_col[i].r = 0.0;	                work_col[i].i = 0.0;			iptr++;		    }		}#else				for (j = 0; j < nrhs; j++) {		    rhs_work = &Bmat[j*ldb];		    clsolve (nsupr, nsupc, &Lval[luptr], &rhs_work[fsupc]);		    cmatvec (nsupr, nrow, nsupc, &Lval[luptr+nsupc],			    &rhs_work[fsupc], &work[0] );		    iptr = istart + nsupc;		    for (i = 0; i < nrow; i++) {			irow = L_SUB(iptr);			c_sub(&rhs_work[irow], &rhs_work[irow], &work[i]);			work[i].r = 0.;	                work[i].i = 0.;			iptr++;		    }		}#endif		    	    } /* else ... */	} /* for L-solve */#ifdef DEBUG  	printf("After L-solve: y=\n");	cprint_soln(n, nrhs, Bmat);#endif	/*	 * Back solve Ux=y.	 */	for (k = Lstore->nsuper; k >= 0; k--) {	    fsupc = L_FST_SUPC(k);	    istart = L_SUB_START(fsupc);	    nsupr = L_SUB_START(fsupc+1) - istart;	    nsupc = L_FST_SUPC(k+1) - fsupc;	    luptr = L_NZ_START(fsupc);	    solve_ops += 4 * nsupc * (nsupc + 1) * nrhs;	    if ( nsupc == 1 ) {		rhs_work = &Bmat[0];		for (j = 0; j < nrhs; j++) {		    c_div(&rhs_work[fsupc], &rhs_work[fsupc], &Lval[luptr]);		    rhs_work += ldb;		}	    } else {#ifdef USE_VENDOR_BLAS#ifdef _CRAY		ftcs1 = _cptofcd("L", strlen("L"));		ftcs2 = _cptofcd("U", strlen("U"));		ftcs3 = _cptofcd("N", strlen("N"));		CTRSM( ftcs1, ftcs2, ftcs3, ftcs3, &nsupc, &nrhs, &alpha,		       &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb);#else		ctrsm_("L", "U", "N", "N", &nsupc, &nrhs, &alpha,		       &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb);#endif#else				for (j = 0; j < nrhs; j++)		    cusolve ( nsupr, nsupc, &Lval[luptr], &Bmat[fsupc+j*ldb] );#endif			    }	    for (j = 0; j < nrhs; ++j) {		rhs_work = &Bmat[j*ldb];		for (jcol = fsupc; jcol < fsupc + nsupc; jcol++) {		    solve_ops += 8*(U_NZ_START(jcol+1) - U_NZ_START(jcol));		    for (i = U_NZ_START(jcol); i < U_NZ_START(jcol+1); i++ ){			irow = U_SUB(i);			cc_mult(&temp_comp, &rhs_work[jcol], &Uval[i]);			c_sub(&rhs_work[irow], &rhs_work[irow], &temp_comp);		    }		}	    }	    	} /* for U-solve */#ifdef DEBUG  	printf("After U-solve: x=\n");	cprint_soln(n, nrhs, Bmat);#endif	/* Compute the final solution X := Pc*X. */	for (i = 0; i < nrhs; i++) {	    rhs_work = &Bmat[i*ldb];	    for (k = 0; k < n; k++) soln[k] = rhs_work[perm_c[k]];	    for (k = 0; k < n; k++) rhs_work[k] = soln[k];	}	        stat->ops[SOLVE] = solve_ops;    } else { /* Solve A'*X=B or CONJ(A)*X=B */	/* Permute right hand sides to form Pc'*B. */	for (i = 0; i < nrhs; i++) {	    rhs_work = &Bmat[i*ldb];	    for (k = 0; k < n; k++) soln[perm_c[k]] = rhs_work[k];	    for (k = 0; k < n; k++) rhs_work[k] = soln[k];	}	stat->ops[SOLVE] = 0;        if (trans == TRANS) {	    for (k = 0; k < nrhs; ++k) {	        /* Multiply by inv(U'). */	        sp_ctrsv("U", "T", "N", L, U, &Bmat[k*ldb], stat, info);	    	        /* Multiply by inv(L'). */	        sp_ctrsv("L", "T", "U", L, U, &Bmat[k*ldb], stat, info);	    }         } else { /* trans == CONJ */            for (k = 0; k < nrhs; ++k) {                                /* Multiply by conj(inv(U')). */                sp_ctrsv("U", "C", "N", L, U, &Bmat[k*ldb], stat, info);                                /* Multiply by conj(inv(L')). */                sp_ctrsv("L", "C", "U", L, U, &Bmat[k*ldb], stat, info);	    }         }	/* Compute the final solution X := Pr'*X (=inv(Pr)*X) */	for (i = 0; i < nrhs; i++) {	    rhs_work = &Bmat[i*ldb];	    for (k = 0; k < n; k++) soln[k] = rhs_work[perm_r[k]];	    for (k = 0; k < n; k++) rhs_work[k] = soln[k];	}    }    SUPERLU_FREE(work);    SUPERLU_FREE(soln);}/* * Diagnostic print of the solution vector  */voidcprint_soln(int n, int nrhs, complex *soln){    int i;    for (i = 0; i < n; i++)   	printf("\t%d: %.4f\n", i, soln[i]);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -