⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sp_preorder.c

📁 LU矩阵分解单机版最新版本
💻 C
字号:
#include "slu_ddefs.h"voidsp_preorder(superlu_options_t *options,  SuperMatrix *A, int *perm_c, 	    int *etree, SuperMatrix *AC){/* * Purpose * ======= * * sp_preorder() permutes the columns of the original matrix. It performs * the following steps: * *    1. Apply column permutation perm_c[] to A's column pointers to form AC; * *    2. If options->Fact = DOFACT, then *       (1) Compute column elimination tree etree[] of AC'AC; *       (2) Post order etree[] to get a postordered elimination tree etree[], *           and a postorder permutation post[]; *       (3) Apply post[] permutation to columns of AC; *       (4) Overwrite perm_c[] with the product perm_c * post. * * Arguments * ========= * * options (input) superlu_options_t* *         Specifies whether or not the elimination tree will be re-used. *         If options->Fact == DOFACT, this means first time factor A,  *         etree is computed, postered, and output. *         Otherwise, re-factor A, etree is input, unchanged on exit. * * A       (input) SuperMatrix* *         Matrix A in A*X=B, of dimension (A->nrow, A->ncol). The number *         of the linear equations is A->nrow. Currently, the type of A can be: *         Stype = NC or SLU_NCP; Mtype = SLU_GE. *         In the future, more general A may be handled. * * perm_c  (input/output) int* *	   Column permutation vector of size A->ncol, which defines the  *         permutation matrix Pc; perm_c[i] = j means column i of A is  *         in position j in A*Pc. *         If options->Fact == DOFACT, perm_c is both input and output. *         On output, it is changed according to a postorder of etree. *         Otherwise, perm_c is input. * * etree   (input/output) int* *         Elimination tree of Pc'*A'*A*Pc, dimension A->ncol. *         If options->Fact == DOFACT, etree is an output argument, *         otherwise it is an input argument. *         Note: etree is a vector of parent pointers for a forest whose *         vertices are the integers 0 to A->ncol-1; etree[root]==A->ncol. * * AC      (output) SuperMatrix* *         The resulting matrix after applied the column permutation *         perm_c[] to matrix A. The type of AC can be: *         Stype = SLU_NCP; Dtype = A->Dtype; Mtype = SLU_GE. * */    NCformat  *Astore;    NCPformat *ACstore;    int       *iwork, *post;    register  int n, i;    n = A->ncol;        /* Apply column permutation perm_c to A's column pointers so to       obtain NCP format in AC = A*Pc.  */    AC->Stype       = SLU_NCP;    AC->Dtype       = A->Dtype;    AC->Mtype       = A->Mtype;    AC->nrow        = A->nrow;    AC->ncol        = A->ncol;    Astore          = A->Store;    ACstore = AC->Store = (void *) SUPERLU_MALLOC( sizeof(NCPformat) );    if ( !ACstore ) ABORT("SUPERLU_MALLOC fails for ACstore");    ACstore->nnz    = Astore->nnz;    ACstore->nzval  = Astore->nzval;    ACstore->rowind = Astore->rowind;    ACstore->colbeg = (int*) SUPERLU_MALLOC(n*sizeof(int));    if ( !(ACstore->colbeg) ) ABORT("SUPERLU_MALLOC fails for ACstore->colbeg");    ACstore->colend = (int*) SUPERLU_MALLOC(n*sizeof(int));    if ( !(ACstore->colend) ) ABORT("SUPERLU_MALLOC fails for ACstore->colend");#ifdef DEBUG    print_int_vec("pre_order:", n, perm_c);    check_perm("Initial perm_c", n, perm_c);#endif          for (i = 0; i < n; i++) {	ACstore->colbeg[perm_c[i]] = Astore->colptr[i]; 	ACstore->colend[perm_c[i]] = Astore->colptr[i+1];    }	    if ( options->Fact == DOFACT ) {#undef ETREE_ATplusA#ifdef ETREE_ATplusA        /*--------------------------------------------	  COMPUTE THE ETREE OF Pc*(A'+A)*Pc'.	  --------------------------------------------*/        int *b_colptr, *b_rowind, bnz, j;	int *c_colbeg, *c_colend;        /*printf("Use etree(A'+A)\n");*/	/* Form B = A + A'. */	at_plus_a(n, Astore->nnz, Astore->colptr, Astore->rowind,		  &bnz, &b_colptr, &b_rowind);	/* Form C = Pc*B*Pc'. */	c_colbeg = (int*) SUPERLU_MALLOC(2*n*sizeof(int));	c_colend = c_colbeg + n;	if (!c_colbeg ) ABORT("SUPERLU_MALLOC fails for c_colbeg/c_colend");	for (i = 0; i < n; i++) {	    c_colbeg[perm_c[i]] = b_colptr[i];   	    c_colend[perm_c[i]] = b_colptr[i+1];	}	for (j = 0; j < n; ++j) {	    for (i = c_colbeg[j]; i < c_colend[j]; ++i) {	        b_rowind[i] = perm_c[b_rowind[i]];	    }	}	/* Compute etree of C. */	sp_symetree(c_colbeg, c_colend, b_rowind, n, etree);	SUPERLU_FREE(b_colptr);	if ( bnz ) SUPERLU_FREE(b_rowind);	SUPERLU_FREE(c_colbeg);	#else        /*--------------------------------------------	  COMPUTE THE COLUMN ELIMINATION TREE.	  --------------------------------------------*/	sp_coletree(ACstore->colbeg, ACstore->colend, ACstore->rowind,		    A->nrow, A->ncol, etree);#endif#ifdef DEBUG		print_int_vec("etree:", n, etree);#endif			/* In symmetric mode, do not do postorder here. */	if ( options->SymmetricMode == NO ) {	    /* Post order etree */	    post = (int *) TreePostorder(n, etree);	    /* for (i = 0; i < n+1; ++i) inv_post[post[i]] = i;	       iwork = post; */#ifdef DEBUG	    print_int_vec("post:", n+1, post);	    check_perm("post", n, post);	#endif		    iwork = (int*) SUPERLU_MALLOC((n+1)*sizeof(int)); 	    if ( !iwork ) ABORT("SUPERLU_MALLOC fails for iwork[]");	    /* Renumber etree in postorder */	    for (i = 0; i < n; ++i) iwork[post[i]] = post[etree[i]];	    for (i = 0; i < n; ++i) etree[i] = iwork[i];#ifdef DEBUG		    print_int_vec("postorder etree:", n, etree);#endif		    /* Postmultiply A*Pc by post[] */	    for (i = 0; i < n; ++i) iwork[post[i]] = ACstore->colbeg[i];	    for (i = 0; i < n; ++i) ACstore->colbeg[i] = iwork[i];	    for (i = 0; i < n; ++i) iwork[post[i]] = ACstore->colend[i];	    for (i = 0; i < n; ++i) ACstore->colend[i] = iwork[i];	    for (i = 0; i < n; ++i)	        iwork[i] = post[perm_c[i]];  /* product of perm_c and post */	    for (i = 0; i < n; ++i) perm_c[i] = iwork[i];#ifdef DEBUG	    print_int_vec("Pc*post:", n, perm_c);	    check_perm("final perm_c", n, perm_c);	#endif	    SUPERLU_FREE (post);	    SUPERLU_FREE (iwork);	} /* end postordering */    } /* if options->Fact == DOFACT ... */}int check_perm(char *what, int n, int *perm){    register int i;    int          *marker;    marker = (int *) calloc(n, sizeof(int));    for (i = 0; i < n; ++i) {	if ( marker[perm[i]] == 1 || perm[i] >= n ) {	    printf("%s: Not a valid PERM[%d] = %d\n", what, i, perm[i]);	    ABORT("check_perm");	} else {	    marker[perm[i]] = 1;	}    }    SUPERLU_FREE(marker);    return 0;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -