📄 sgssvx.c
字号:
/* * -- SuperLU routine (version 3.0) -- * Univ. of California Berkeley, Xerox Palo Alto Research Center, * and Lawrence Berkeley National Lab. * October 15, 2003 * */#include "slu_sdefs.h"voidsgssvx(superlu_options_t *options, SuperMatrix *A, int *perm_c, int *perm_r, int *etree, char *equed, float *R, float *C, SuperMatrix *L, SuperMatrix *U, void *work, int lwork, SuperMatrix *B, SuperMatrix *X, float *recip_pivot_growth, float *rcond, float *ferr, float *berr, mem_usage_t *mem_usage, SuperLUStat_t *stat, int *info ){/* * Purpose * ======= * * SGSSVX solves the system of linear equations A*X=B or A'*X=B, using * the LU factorization from sgstrf(). Error bounds on the solution and * a condition estimate are also provided. It performs the following steps: * * 1. If A is stored column-wise (A->Stype = SLU_NC): * * 1.1. If options->Equil = YES, scaling factors are computed to * equilibrate the system: * options->Trans = NOTRANS: * diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B * options->Trans = TRANS: * (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B * options->Trans = CONJ: * (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B * Whether or not the system will be equilibrated depends on the * scaling of the matrix A, but if equilibration is used, A is * overwritten by diag(R)*A*diag(C) and B by diag(R)*B * (if options->Trans=NOTRANS) or diag(C)*B (if options->Trans * = TRANS or CONJ). * * 1.2. Permute columns of A, forming A*Pc, where Pc is a permutation * matrix that usually preserves sparsity. * For more details of this step, see sp_preorder.c. * * 1.3. If options->Fact != FACTORED, the LU decomposition is used to * factor the matrix A (after equilibration if options->Equil = YES) * as Pr*A*Pc = L*U, with Pr determined by partial pivoting. * * 1.4. Compute the reciprocal pivot growth factor. * * 1.5. If some U(i,i) = 0, so that U is exactly singular, then the * routine returns with info = i. Otherwise, the factored form of * A is used to estimate the condition number of the matrix A. If * the reciprocal of the condition number is less than machine * precision, info = A->ncol+1 is returned as a warning, but the * routine still goes on to solve for X and computes error bounds * as described below. * * 1.6. The system of equations is solved for X using the factored form * of A. * * 1.7. If options->IterRefine != NOREFINE, iterative refinement is * applied to improve the computed solution matrix and calculate * error bounds and backward error estimates for it. * * 1.8. If equilibration was used, the matrix X is premultiplied by * diag(C) (if options->Trans = NOTRANS) or diag(R) * (if options->Trans = TRANS or CONJ) so that it solves the * original system before equilibration. * * 2. If A is stored row-wise (A->Stype = SLU_NR), apply the above algorithm * to the transpose of A: * * 2.1. If options->Equil = YES, scaling factors are computed to * equilibrate the system: * options->Trans = NOTRANS: * diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B * options->Trans = TRANS: * (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B * options->Trans = CONJ: * (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B * Whether or not the system will be equilibrated depends on the * scaling of the matrix A, but if equilibration is used, A' is * overwritten by diag(R)*A'*diag(C) and B by diag(R)*B * (if trans='N') or diag(C)*B (if trans = 'T' or 'C'). * * 2.2. Permute columns of transpose(A) (rows of A), * forming transpose(A)*Pc, where Pc is a permutation matrix that * usually preserves sparsity. * For more details of this step, see sp_preorder.c. * * 2.3. If options->Fact != FACTORED, the LU decomposition is used to * factor the transpose(A) (after equilibration if * options->Fact = YES) as Pr*transpose(A)*Pc = L*U with the * permutation Pr determined by partial pivoting. * * 2.4. Compute the reciprocal pivot growth factor. * * 2.5. If some U(i,i) = 0, so that U is exactly singular, then the * routine returns with info = i. Otherwise, the factored form * of transpose(A) is used to estimate the condition number of the * matrix A. If the reciprocal of the condition number * is less than machine precision, info = A->nrow+1 is returned as * a warning, but the routine still goes on to solve for X and * computes error bounds as described below. * * 2.6. The system of equations is solved for X using the factored form * of transpose(A). * * 2.7. If options->IterRefine != NOREFINE, iterative refinement is * applied to improve the computed solution matrix and calculate * error bounds and backward error estimates for it. * * 2.8. If equilibration was used, the matrix X is premultiplied by * diag(C) (if options->Trans = NOTRANS) or diag(R) * (if options->Trans = TRANS or CONJ) so that it solves the * original system before equilibration. * * See supermatrix.h for the definition of 'SuperMatrix' structure. * * Arguments * ========= * * options (input) superlu_options_t* * The structure defines the input parameters to control * how the LU decomposition will be performed and how the * system will be solved. * * A (input/output) SuperMatrix* * Matrix A in A*X=B, of dimension (A->nrow, A->ncol). The number * of the linear equations is A->nrow. Currently, the type of A can be: * Stype = SLU_NC or SLU_NR, Dtype = SLU_D, Mtype = SLU_GE. * In the future, more general A may be handled. * * On entry, If options->Fact = FACTORED and equed is not 'N', * then A must have been equilibrated by the scaling factors in * R and/or C. * On exit, A is not modified if options->Equil = NO, or if * options->Equil = YES but equed = 'N' on exit. * Otherwise, if options->Equil = YES and equed is not 'N', * A is scaled as follows: * If A->Stype = SLU_NC: * equed = 'R': A := diag(R) * A * equed = 'C': A := A * diag(C) * equed = 'B': A := diag(R) * A * diag(C). * If A->Stype = SLU_NR: * equed = 'R': transpose(A) := diag(R) * transpose(A) * equed = 'C': transpose(A) := transpose(A) * diag(C) * equed = 'B': transpose(A) := diag(R) * transpose(A) * diag(C). * * perm_c (input/output) int* * If A->Stype = SLU_NC, Column permutation vector of size A->ncol, * which defines the permutation matrix Pc; perm_c[i] = j means * column i of A is in position j in A*Pc. * On exit, perm_c may be overwritten by the product of the input * perm_c and a permutation that postorders the elimination tree * of Pc'*A'*A*Pc; perm_c is not changed if the elimination tree * is already in postorder. * * If A->Stype = SLU_NR, column permutation vector of size A->nrow, * which describes permutation of columns of transpose(A) * (rows of A) as described above. * * perm_r (input/output) int* * If A->Stype = SLU_NC, row permutation vector of size A->nrow, * which defines the permutation matrix Pr, and is determined * by partial pivoting. perm_r[i] = j means row i of A is in * position j in Pr*A. * * If A->Stype = SLU_NR, permutation vector of size A->ncol, which * determines permutation of rows of transpose(A) * (columns of A) as described above. * * If options->Fact = SamePattern_SameRowPerm, the pivoting routine * will try to use the input perm_r, unless a certain threshold * criterion is violated. In that case, perm_r is overwritten by a * new permutation determined by partial pivoting or diagonal * threshold pivoting. * Otherwise, perm_r is output argument. * * etree (input/output) int*, dimension (A->ncol) * Elimination tree of Pc'*A'*A*Pc. * If options->Fact != FACTORED and options->Fact != DOFACT, * etree is an input argument, otherwise it is an output argument. * Note: etree is a vector of parent pointers for a forest whose * vertices are the integers 0 to A->ncol-1; etree[root]==A->ncol. * * equed (input/output) char* * Specifies the form of equilibration that was done. * = 'N': No equilibration. * = 'R': Row equilibration, i.e., A was premultiplied by diag(R). * = 'C': Column equilibration, i.e., A was postmultiplied by diag(C). * = 'B': Both row and column equilibration, i.e., A was replaced * by diag(R)*A*diag(C). * If options->Fact = FACTORED, equed is an input argument, * otherwise it is an output argument. * * R (input/output) float*, dimension (A->nrow) * The row scale factors for A or transpose(A). * If equed = 'R' or 'B', A (if A->Stype = SLU_NC) or transpose(A) * (if A->Stype = SLU_NR) is multiplied on the left by diag(R). * If equed = 'N' or 'C', R is not accessed. * If options->Fact = FACTORED, R is an input argument, * otherwise, R is output. * If options->zFact = FACTORED and equed = 'R' or 'B', each element * of R must be positive. * * C (input/output) float*, dimension (A->ncol) * The column scale factors for A or transpose(A). * If equed = 'C' or 'B', A (if A->Stype = SLU_NC) or transpose(A) * (if A->Stype = SLU_NR) is multiplied on the right by diag(C). * If equed = 'N' or 'R', C is not accessed. * If options->Fact = FACTORED, C is an input argument, * otherwise, C is output. * If options->Fact = FACTORED and equed = 'C' or 'B', each element * of C must be positive. * * L (output) SuperMatrix* * The factor L from the factorization * Pr*A*Pc=L*U (if A->Stype SLU_= NC) or * Pr*transpose(A)*Pc=L*U (if A->Stype = SLU_NR). * Uses compressed row subscripts storage for supernodes, i.e., * L has types: Stype = SLU_SC, Dtype = SLU_S, Mtype = SLU_TRLU. * * U (output) SuperMatrix* * The factor U from the factorization * Pr*A*Pc=L*U (if A->Stype = SLU_NC) or * Pr*transpose(A)*Pc=L*U (if A->Stype = SLU_NR). * Uses column-wise storage scheme, i.e., U has types: * Stype = SLU_NC, Dtype = SLU_S, Mtype = SLU_TRU. * * work (workspace/output) void*, size (lwork) (in bytes) * User supplied workspace, should be large enough * to hold data structures for factors L and U. * On exit, if fact is not 'F', L and U point to this array. * * lwork (input) int * Specifies the size of work array in bytes. * = 0: allocate space internally by system malloc; * > 0: use user-supplied work array of length lwork in bytes, * returns error if space runs out. * = -1: the routine guesses the amount of space needed without * performing the factorization, and returns it in * mem_usage->total_needed; no other side effects. * * See argument 'mem_usage' for memory usage statistics. * * B (input/output) SuperMatrix* * B has types: Stype = SLU_DN, Dtype = SLU_S, Mtype = SLU_GE. * On entry, the right hand side matrix. * If B->ncol = 0, only LU decomposition is performed, the triangular * solve is skipped. * On exit, * if equed = 'N', B is not modified; otherwise * if A->Stype = SLU_NC: * if options->Trans = NOTRANS and equed = 'R' or 'B', * B is overwritten by diag(R)*B; * if options->Trans = TRANS or CONJ and equed = 'C' of 'B', * B is overwritten by diag(C)*B; * if A->Stype = SLU_NR: * if options->Trans = NOTRANS and equed = 'C' or 'B', * B is overwritten by diag(C)*B; * if options->Trans = TRANS or CONJ and equed = 'R' of 'B', * B is overwritten by diag(R)*B. * * X (output) SuperMatrix* * X has types: Stype = SLU_DN, Dtype = SLU_S, Mtype = SLU_GE. * If info = 0 or info = A->ncol+1, X contains the solution matrix * to the original system of equations. Note that A and B are modified * on exit if equed is not 'N', and the solution to the equilibrated * system is inv(diag(C))*X if options->Trans = NOTRANS and * equed = 'C' or 'B', or inv(diag(R))*X if options->Trans = 'T' or 'C' * and equed = 'R' or 'B'. * * recip_pivot_growth (output) float* * The reciprocal pivot growth factor max_j( norm(A_j)/norm(U_j) ). * The infinity norm is used. If recip_pivot_growth is much less * than 1, the stability of the LU factorization could be poor. * * rcond (output) float* * The estimate of the reciprocal condition number of the matrix A * after equilibration (if done). If rcond is less than the machine * precision (in particular, if rcond = 0), the matrix is singular * to working precision. This condition is indicated by a return * code of info > 0. * * FERR (output) float*, dimension (B->ncol) * The estimated forward error bound for each solution vector * X(j) (the j-th column of the solution matrix X). * If XTRUE is the true solution corresponding to X(j), FERR(j) * is an estimated upper bound for the magnitude of the largest * element in (X(j) - XTRUE) divided by the magnitude of the * largest element in X(j). The estimate is as reliable as * the estimate for RCOND, and is almost always a slight * overestimate of the true error. * If options->IterRefine = NOREFINE, ferr = 1.0. * * BERR (output) float*, dimension (B->ncol) * The componentwise relative backward error of each solution * vector X(j) (i.e., the smallest relative change in * any element of A or B that makes X(j) an exact solution). * If options->IterRefine = NOREFINE, berr = 1.0. * * mem_usage (output) mem_usage_t* * Record the memory usage statistics, consisting of following fields: * - for_lu (float)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -