⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 zgsequ.c

📁 LU分解求解矩阵方程组的解
💻 C
字号:
/* * File name:	zgsequ.c * History:     Modified from LAPACK routine ZGEEQU */#include <math.h>#include "superlu_zdefs.h"voidzgsequ_dist(SuperMatrix *A, double *r, double *c, double *rowcnd,	    double *colcnd, double *amax, int_t *info){/*        Purpose       =======       ZGSEQU_DIST computes row and column scalings intended to equilibrate an       M-by-N sparse matrix A and reduce its condition number. R returns the row    scale factors and C the column scale factors, chosen to try to make       the largest element in each row and column of the matrix B with       elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1.       R(i) and C(j) are restricted to be between SMLNUM = smallest safe       number and BIGNUM = largest safe number.  Use of these scaling       factors is not guaranteed to reduce the condition number of A but       works well in practice.       See supermatrix.h for the definition of 'SuperMatrix' structure.     Arguments       =========       A       (input) SuperMatrix*            The matrix of dimension (A->nrow, A->ncol) whose equilibration            factors are to be computed. The type of A can be:            Stype = SLU_NC; Dtype = SLU_Z; Mtype = SLU_GE.	        R       (output) double*, size A->nrow            If INFO = 0 or INFO > M, R contains the row scale factors               for A.	        C       (output) double*, size A->ncol            If INFO = 0,  C contains the column scale factors for A.	        ROWCND  (output) double*            If INFO = 0 or INFO > M, ROWCND contains the ratio of the               smallest R(i) to the largest R(i).  If ROWCND >= 0.1 and               AMAX is neither too large nor too small, it is not worth               scaling by R.	        COLCND  (output) double*            If INFO = 0, COLCND contains the ratio of the smallest               C(i) to the largest C(i).  If COLCND >= 0.1, it is not               worth scaling by C.	        AMAX    (output) double*            Absolute value of largest matrix element.  If AMAX is very               close to overflow or very close to underflow, the matrix               should be scaled.	        INFO    (output) int*            = 0:  successful exit               < 0:  if INFO = -i, the i-th argument had an illegal value               > 0:  if INFO = i,  and i is                     <= M:  the i-th row of A is exactly zero                     >  M:  the (i-M)-th column of A is exactly zero       ===================================================================== */    /* Local variables */    NCformat *Astore;    doublecomplex *Aval;    int i, j, irow;    double rcmin, rcmax;    double bignum, smlnum;    extern double dlamch_(char *);        /* Test the input parameters. */    *info = 0;    if ( A->nrow < 0 || A->ncol < 0 ||	 A->Stype != SLU_NC || A->Dtype != SLU_Z || A->Mtype != SLU_GE )	*info = -1;    if (*info != 0) {	i = -(*info);	xerbla_("zgsequ_dist", &i);	return;    }    /* Quick return if possible */    if ( A->nrow == 0 || A->ncol == 0 ) {	*rowcnd = 1.;	*colcnd = 1.;	*amax = 0.;	return;    }    Astore = (NCformat *) A->Store;    Aval = (doublecomplex *) Astore->nzval;        /* Get machine constants. */    smlnum = dlamch_("S");    bignum = 1. / smlnum;    /* Compute row scale factors. */    for (i = 0; i < A->nrow; ++i) r[i] = 0.;    /* Find the maximum element in each row. */    for (j = 0; j < A->ncol; ++j)	for (i = Astore->colptr[j]; i < Astore->colptr[j+1]; ++i) {	    irow = Astore->rowind[i];	    r[irow] = SUPERLU_MAX( r[irow], z_abs1(&Aval[i]) );	}    /* Find the maximum and minimum scale factors. */    rcmin = bignum;    rcmax = 0.;    for (i = 0; i < A->nrow; ++i) {	rcmax = SUPERLU_MAX(rcmax, r[i]);	rcmin = SUPERLU_MIN(rcmin, r[i]);    }    *amax = rcmax;    if (rcmin == 0.) {	/* Find the first zero scale factor and return an error code. */	for (i = 0; i < A->nrow; ++i)	    if (r[i] == 0.) {		*info = i + 1;		return;	    }    } else {	/* Invert the scale factors. */	for (i = 0; i < A->nrow; ++i)	    r[i] = 1. / SUPERLU_MIN( SUPERLU_MAX( r[i], smlnum ), bignum );	/* Compute ROWCND = min(R(I)) / max(R(I)) */	*rowcnd = SUPERLU_MAX( rcmin, smlnum ) / SUPERLU_MIN( rcmax, bignum );    }    /* Compute column scale factors */    for (j = 0; j < A->ncol; ++j) c[j] = 0.;    /* Find the maximum element in each column, assuming the row       scalings computed above. */    for (j = 0; j < A->ncol; ++j)	for (i = Astore->colptr[j]; i < Astore->colptr[j+1]; ++i) {	    irow = Astore->rowind[i];	    c[j] = SUPERLU_MAX( c[j], z_abs1(&Aval[i]) * r[irow] );	}    /* Find the maximum and minimum scale factors. */    rcmin = bignum;    rcmax = 0.;    for (j = 0; j < A->ncol; ++j) {	rcmax = SUPERLU_MAX(rcmax, c[j]);	rcmin = SUPERLU_MIN(rcmin, c[j]);    }    if (rcmin == 0.) {	/* Find the first zero scale factor and return an error code. */	for (j = 0; j < A->ncol; ++j)	    if ( c[j] == 0. ) {		*info = A->nrow + j + 1;		return;	    }    } else {	/* Invert the scale factors. */	for (j = 0; j < A->ncol; ++j)	    c[j] = 1. / SUPERLU_MIN( SUPERLU_MAX( c[j], smlnum ), bignum);	/* Compute COLCND = min(C(J)) / max(C(J)) */	*colcnd = SUPERLU_MAX( rcmin, smlnum ) / SUPERLU_MIN( rcmax, bignum );    }    return;} /* zgsequ_dist */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -