📄 stm8l15x_spi.c
字号:
*/
void SPI_BiDirectionalLineConfig(SPI_TypeDef* SPIx, SPI_Direction_TypeDef SPI_Direction)
{
/* Check function parameters */
assert_param(IS_SPI_DIRECTION(SPI_Direction));
if (SPI_Direction != SPI_Direction_Rx)
{
SPIx->CR2 |= SPI_CR2_BDOE; /* Set the Tx only mode*/
}
else
{
SPIx->CR2 &= (uint8_t)(~SPI_CR2_BDOE); /* Set the Rx only mode*/
}
}
/**
* @}
*/
/** @defgroup SPI_Group2 Data transfers functions
* @brief Data transfers functions
*
@verbatim
===============================================================================
Data transfers functions
===============================================================================
This section provides a set of functions allowing to manage the SPI data transfers
In reception, data are received and then stored into an internal Rx buffer while
In transmission, data are first stored into an internal Tx buffer before being
transmitted.
The read access of the SPI_DR register can be done using the SPI_ReceiveData()
function and returns the Rx buffered value. Whereas a write access to the SPI_DR
can be done using SPI_SendData() function and stores the written data into
Tx buffer.
@endverbatim
* @{
*/
/**
* @brief Transmits a Data through the SPI peripheral.
* @param SPIx: where x can be 1 to select the specified SPI peripheral.
* @param Data: Byte to be transmitted.
* @retval None
*/
void SPI_SendData(SPI_TypeDef* SPIx, uint8_t Data)
{
SPIx->DR = Data; /* Write in the DR register the data to be sent*/
}
/**
* @brief Returns the most recent received data by the SPI peripheral.
* @param SPIx: where x can be 1 to select the specified SPI peripheral.
* @retval The value of the received data.
*/
uint8_t SPI_ReceiveData(SPI_TypeDef* SPIx)
{
return ((uint8_t)SPIx->DR); /* Return the data in the DR register*/
}
/**
* @}
*/
/** @defgroup SPI_Group3 Hardware CRC Calculation functions
* @brief Hardware CRC Calculation functions
*
@verbatim
===============================================================================
Hardware CRC Calculation functions
===============================================================================
This section provides a set of functions allowing to manage the SPI CRC hardware
calculation
SPI communication using CRC is possible through the following procedure:
1. Program the Data direction, Polarity, Phase, First Data, Baud Rate Prescaler,
Slave Management, Peripheral Mode and CRC Polynomial values using the SPI_Init()
function.
2. Enable the CRC calculation using the SPI_CalculateCRC() function.
3. Enable the SPI using the SPI_Cmd() function
4. Before writing the last data to the TX buffer, set the CRCNext bit using the
SPI_TransmitCRC() function to indicate that after transmission of the last
data, the CRC should be transmitted.
5. After transmitting the last data, the SPI transmits the CRC. The SPI_CR2_CRCNEXT
bit is reset. The CRC is also received and compared against the SPI_RXCRCR
value.
If the value does not match, the SPI_FLAG_CRCERR flag is set and an interrupt
can be generated when the SPI_IT_ERR interrupt is enabled.
Note:
-----
- It is advised to don't read the calculate CRC values during the communication.
- When the SPI is in slave mode, be careful to enable CRC calculation only
when the clock is stable, that is, when the clock is in the steady state.
If not, a wrong CRC calculation may be done. In fact, the CRC is sensitive
to the SCK slave input clock as soon as CRCEN is set, and this, whatever
the value of the SPE bit.
- With high bitrate frequencies, be careful when transmitting the CRC.
As the number of used CPU cycles has to be as low as possible in the CRC
transfer phase, it is forbidden to call software functions in the CRC
transmission sequence to avoid errors in the last data and CRC reception.
In fact, CRCNEXT bit has to be written before the end of the transmission/reception
of the last data.
- For high bit rate frequencies, it is advised to use the DMA mode to avoid the
degradation of the SPI speed performance due to CPU accesses impacting the
SPI bandwidth.
- When the STM8L15x are configured as slaves and the NSS hardware mode is
used, the NSS pin needs to be kept low between the data phase and the CRC
phase.
- When the SPI is configured in slave mode with the CRC feature enabled, CRC
calculation takes place even if a high level is applied on the NSS pin.
This may happen for example in case of a multislave environment where the
communication master addresses slaves alternately.
- Between a slave de-selection (high level on NSS) and a new slave selection
(low level on NSS), the CRC value should be cleared on both master and slave
sides in order to resynchronize the master and slave for their respective
CRC calculation.
To clear the CRC, follow the procedure below:
1. Disable SPI using the SPI_Cmd() function
2. Disable the CRC calculation using the SPI_CalculateCRC() function.
3. Enable the CRC calculation using the SPI_CalculateCRC() function.
4. Enable SPI using the SPI_Cmd() function.
@endverbatim
* @{
*/
/**
* @brief Enables the transmit of the CRC value.
* @param SPIx: where x can be 1 to select the specified SPI peripheral.
* @retval None
*/
void SPI_TransmitCRC(SPI_TypeDef* SPIx)
{
SPIx->CR2 |= SPI_CR2_CRCNEXT; /* Enable the CRC transmission*/
}
/**
* @brief Enables or disables the CRC value calculation of the transferred bytes.
* @param SPIx: where x can be 1 to select the specified SPI peripheral.
* @param NewState Indicates the new state of the SPI CRC value calculation.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void SPI_CalculateCRCCmd(SPI_TypeDef* SPIx, FunctionalState NewState)
{
/* Check function parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
/* SPI must be disable for correct operation od Hardware CRC calculation */
SPI_Cmd(SPI1, DISABLE);
if (NewState != DISABLE)
{
SPIx->CR2 |= SPI_CR2_CRCEN; /* Enable the CRC calculation*/
}
else
{
SPIx->CR2 &= (uint8_t)(~SPI_CR2_CRCEN); /* Disable the CRC calculation*/
}
}
/**
* @brief Returns the transmit or the receive CRC register value.
* @param SPIx: where x can be 1 to select the specified SPI peripheral.
* @param SPI_CRC: Specifies the CRC register to be read.
* This parameter can be one of the following values:
* @arg SPI_CRC_RX: Select Tx CRC register
* @arg SPI_CRC_TX: Select Rx CRC register
* @retval The selected CRC register value.
*/
uint8_t SPI_GetCRC(SPI_TypeDef* SPIx, SPI_CRC_TypeDef SPI_CRC)
{
uint8_t crcreg = 0;
/* Check function parameters */
assert_param(IS_SPI_CRC(SPI_CRC));
if (SPI_CRC != SPI_CRC_RX)
{
crcreg = SPIx->TXCRCR; /* Get the Tx CRC register*/
}
else
{
crcreg = SPIx->RXCRCR; /* Get the Rx CRC register*/
}
/* Return the selected CRC register status*/
return crcreg;
}
/**
* @brief Reset the Rx CRCR and Tx CRCR registers.
* @param SPIx: where x can be 1 to select the specified SPI peripheral.
* @retval None
*/
void SPI_ResetCRC(SPI_TypeDef* SPIx)
{
/* Rx CRCR & Tx CRCR registers are reset when CRCEN (hardware calculation)
bit in SPI_CR2 is written to 1 (enable) */
SPI_CalculateCRCCmd(SPIx, ENABLE);
/* Previous function disable the SPI */
SPI_Cmd(SPIx, ENABLE);
}
/**
* @brief Returns the CRC Polynomial register value.
* @param SPIx: where x can be 1 to select the specified SPI peripheral.
* @retval uint8_t The CRC Polynomial register value.
*/
uint8_t SPI_GetCRCPolynomial(SPI_TypeDef* SPIx)
{
return SPIx->CRCPR; /* Return the CRC polynomial register */
}
/**
* @}
*/
/** @defgroup SPI_Group4 DMA transfers management functions
* @brief DMA transfers management functions
*
@verbatim
===============================================================================
DMA transfers management functions
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Enables or disables the SPI DMA interface.
* @param SPIx: where x can be 1 to select the specified SPI peripheral.
* @param SPI_DMAReq Specifies the SPI DMA transfer request to be enabled or disabled.
* This parameter can be one of the following values:
* @arg SPI_DMAReq_RX: SPI DMA Rx transfer requests
* @arg SPI_DMAReq_TX: SPI DMA Tx transfer requests
* @param NewState Indicates the new state of the SPI DMA request.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void SPI_DMACmd(SPI_TypeDef* SPIx, SPI_DMAReq_TypeDef SPI_DMAReq, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
assert_param(IS_SPI_DMAREQ(SPI_DMAReq));
if (NewState != DISABLE)
{
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -