⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 aresonvv.c

📁 Audacity是一款用於錄音和編輯聲音的、免費的開放源碼軟體。它可以執行於Mac OS X、Microsoft Windows、GNU/Linux和其它作業系統
💻 C
📖 第 1 页 / 共 4 页
字号:
	     */	    if (to_stop < togo) {		if (to_stop == 0) {		    if (cnt) {			togo = 0;			break;		    } else /* keep togo as is: since cnt == 0, we		            * can set the logical stop flag on this		            * output block		            */			susp->logically_stopped = true;		} else /* limit togo so we can start a new		        * block at the LST		        */		    togo = to_stop;	    }	}	n = togo;	c3co_reg = susp->c3co;	c3p1_reg = susp->c3p1;	c3t4_reg = susp->c3t4;	omc3_reg = susp->omc3;	coshz_reg = susp->coshz;	c2_reg = susp->c2;	c1_reg = susp->c1;	recompute_reg = susp->recompute;	normalization_reg = susp->normalization;	y1_reg = susp->y1;	y2_reg = susp->y2;	bw_pHaSe_ReG = susp->bw_pHaSe;	bw_x1_sample_reg = susp->bw_x1_sample;	s1_ptr_reg = susp->s1_ptr;	out_ptr_reg = out_ptr;	if (n) do { /* the inner sample computation loop */            register double y0, current;	    if (bw_pHaSe_ReG >= 1.0) {/* fixup-depends bw */		/* pick up next sample as bw_x1_sample: */		susp->bw_ptr++;		susp_took(bw_cnt, 1);		bw_pHaSe_ReG -= 1.0;		susp_check_term_samples_break(bw, bw_ptr, bw_cnt, bw_x1_sample_reg);		bw_x1_sample_reg = susp_current_sample(bw, bw_ptr);		c3co_reg = susp->c3co = exp(bw_x1_sample_reg);		c3p1_reg = susp->c3p1 = c3co_reg + 1.0;		c3t4_reg = susp->c3t4 = c3co_reg * 4.0;		omc3_reg = susp->omc3 = 1.0 - c3co_reg;		recompute_reg = susp->recompute = true;	    }	    if (recompute_reg) {	        recompute_reg = false;	        c2_reg = c3t4_reg * coshz_reg / c3p1_reg;	        c1_reg = (normalization_reg == 0 ? 0.0 :	              (normalization_reg == 1 ? 1.0 - omc3_reg * sqrt(1.0 - c2_reg * c2_reg / c3t4_reg) :	               1.0 - sqrt(c3p1_reg * c3p1_reg - c2_reg * c2_reg) * omc3_reg / c3p1_reg));	    }current = *s1_ptr_reg++;            y0 = c1_reg * current + c2_reg * y1_reg - c3co_reg * y2_reg;            *out_ptr_reg++ = (sample_type) y0;            y2_reg = y1_reg; y1_reg = y0 - current;	    bw_pHaSe_ReG += bw_pHaSe_iNcR_rEg;	} while (--n); /* inner loop */	togo -= n;	susp->recompute = recompute_reg;	susp->y1 = y1_reg;	susp->y2 = y2_reg;	susp->bw_pHaSe = bw_pHaSe_ReG;	susp->bw_x1_sample = bw_x1_sample_reg;	/* using s1_ptr_reg is a bad idea on RS/6000: */	susp->s1_ptr += togo;	out_ptr += togo;	susp_took(s1_cnt, togo);	susp->hz1_pHaSe += togo * susp->hz1_pHaSe_iNcR;	susp->hz1_n -= togo;	cnt += togo;    } /* outer loop */    /* test for termination */    if (togo == 0 && cnt == 0) {	snd_list_terminate(snd_list);    } else {	snd_list->block_len = cnt;	susp->susp.current += cnt;    }    /* test for logical stop */    if (susp->logically_stopped) {	snd_list->logically_stopped = true;    } else if (susp->susp.log_stop_cnt == susp->susp.current) {	susp->logically_stopped = true;    }} /* aresonvv_nri_fetch */void aresonvv_nrr_fetch(register aresonvv_susp_type susp, snd_list_type snd_list){    int cnt = 0; /* how many samples computed */    sample_type hz1_val;    sample_type bw_val;    int togo;    int n;    sample_block_type out;    register sample_block_values_type out_ptr;    register sample_block_values_type out_ptr_reg;    register double c3co_reg;    register double c2_reg;    register double c1_reg;    register boolean recompute_reg;    register double y1_reg;    register double y2_reg;    register sample_block_values_type s1_ptr_reg;    falloc_sample_block(out, "aresonvv_nrr_fetch");    out_ptr = out->samples;    snd_list->block = out;    /* make sure sounds are primed with first values */    if (!susp->started) {	susp->started = true;	susp->hz1_pHaSe = 1.0;	susp->bw_pHaSe = 1.0;    }    susp_check_term_samples(hz1, hz1_ptr, hz1_cnt);    susp_check_term_samples(bw, bw_ptr, bw_cnt);    while (cnt < max_sample_block_len) { /* outer loop */	/* first compute how many samples to generate in inner loop: */	/* don't overflow the output sample block: */	togo = max_sample_block_len - cnt;	/* don't run past the s1 input sample block: */	susp_check_term_log_samples(s1, s1_ptr, s1_cnt);	togo = MIN(togo, susp->s1_cnt);	/* grab next hz1_x1_sample when phase goes past 1.0; */	/* use hz1_n (computed below) to avoid roundoff errors: */	if (susp->hz1_n <= 0) {	    susp_check_term_samples(hz1, hz1_ptr, hz1_cnt);	    susp->hz1_x1_sample = susp_fetch_sample(hz1, hz1_ptr, hz1_cnt);	    susp->hz1_pHaSe -= 1.0;	    /* hz1_n gets number of samples before phase exceeds 1.0: */	    susp->hz1_n = (long) ((1.0 - susp->hz1_pHaSe) *					susp->output_per_hz1);	    susp->coshz = cos(susp->hz1_x1_sample);	    susp->recompute = true;	}	togo = MIN(togo, susp->hz1_n);	hz1_val = susp->hz1_x1_sample;	/* grab next bw_x1_sample when phase goes past 1.0; */	/* use bw_n (computed below) to avoid roundoff errors: */	if (susp->bw_n <= 0) {	    susp_check_term_samples(bw, bw_ptr, bw_cnt);	    susp->bw_x1_sample = susp_fetch_sample(bw, bw_ptr, bw_cnt);	    susp->bw_pHaSe -= 1.0;	    /* bw_n gets number of samples before phase exceeds 1.0: */	    susp->bw_n = (long) ((1.0 - susp->bw_pHaSe) *					susp->output_per_bw);	    susp->c3co = exp(susp->bw_x1_sample);	    susp->c3p1 = susp->c3co + 1.0;	    susp->c3t4 = susp->c3co * 4.0;	    susp->omc3 = 1.0 - susp->c3co;	    susp->recompute = true;	}	togo = MIN(togo, susp->bw_n);	bw_val = susp->bw_x1_sample;	if (susp->recompute) {	    susp->recompute = false;	    susp->c2 = susp->c3t4 * susp->coshz / susp->c3p1;	    susp->c1 = (susp->normalization == 0 ? 0.0 :	          (susp->normalization == 1 ? 1.0 - susp->omc3 * sqrt(1.0 - susp->c2 * susp->c2 / susp->c3t4) :	           1.0 - sqrt(susp->c3p1 * susp->c3p1 - susp->c2 * susp->c2) * susp->omc3 / susp->c3p1));	}	/* don't run past terminate time */	if (susp->terminate_cnt != UNKNOWN &&	    susp->terminate_cnt <= susp->susp.current + cnt + togo) {	    togo = susp->terminate_cnt - (susp->susp.current + cnt);	    if (togo == 0) break;	}	/* don't run past logical stop time */	if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {	    int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);	    /* break if to_stop == 0 (we're at the logical stop)	     * AND cnt > 0 (we're not at the beginning of the	     * output block).	     */	    if (to_stop < togo) {		if (to_stop == 0) {		    if (cnt) {			togo = 0;			break;		    } else /* keep togo as is: since cnt == 0, we		            * can set the logical stop flag on this		            * output block		            */			susp->logically_stopped = true;		} else /* limit togo so we can start a new		        * block at the LST		        */		    togo = to_stop;	    }	}	n = togo;	c3co_reg = susp->c3co;	c2_reg = susp->c2;	c1_reg = susp->c1;	recompute_reg = susp->recompute;	y1_reg = susp->y1;	y2_reg = susp->y2;	s1_ptr_reg = susp->s1_ptr;	out_ptr_reg = out_ptr;	if (n) do { /* the inner sample computation loop */            register double y0, current;current = *s1_ptr_reg++;            y0 = c1_reg * current + c2_reg * y1_reg - c3co_reg * y2_reg;            *out_ptr_reg++ = (sample_type) y0;            y2_reg = y1_reg; y1_reg = y0 - current;	} while (--n); /* inner loop */	susp->recompute = recompute_reg;	susp->y1 = y1_reg;	susp->y2 = y2_reg;	/* using s1_ptr_reg is a bad idea on RS/6000: */	susp->s1_ptr += togo;	out_ptr += togo;	susp_took(s1_cnt, togo);	susp->hz1_pHaSe += togo * susp->hz1_pHaSe_iNcR;	susp->hz1_n -= togo;	susp->bw_pHaSe += togo * susp->bw_pHaSe_iNcR;	susp->bw_n -= togo;	cnt += togo;    } /* outer loop */    /* test for termination */    if (togo == 0 && cnt == 0) {	snd_list_terminate(snd_list);    } else {	snd_list->block_len = cnt;	susp->susp.current += cnt;    }    /* test for logical stop */    if (susp->logically_stopped) {	snd_list->logically_stopped = true;    } else if (susp->susp.log_stop_cnt == susp->susp.current) {	susp->logically_stopped = true;    }} /* aresonvv_nrr_fetch */void aresonvv_toss_fetch(susp, snd_list)  register aresonvv_susp_type susp;  snd_list_type snd_list;{    long final_count = susp->susp.toss_cnt;    time_type final_time = susp->susp.t0;    long n;    /* fetch samples from s1 up to final_time for this block of zeros */    while ((round((final_time - susp->s1->t0) * susp->s1->sr)) >=	   susp->s1->current)	susp_get_samples(s1, s1_ptr, s1_cnt);    /* fetch samples from hz1 up to final_time for this block of zeros */    while ((round((final_time - susp->hz1->t0) * susp->hz1->sr)) >=	   susp->hz1->current)	susp_get_samples(hz1, hz1_ptr, hz1_cnt);    /* fetch samples from bw up to final_time for this block of zeros */    while ((round((final_time - susp->bw->t0) * susp->bw->sr)) >=	   susp->bw->current)	susp_get_samples(bw, bw_ptr, bw_cnt);    /* convert to normal processing when we hit final_count */    /* we want each signal positioned at final_time */    n = round((final_time - susp->s1->t0) * susp->s1->sr -         (susp->s1->current - susp->s1_cnt));    susp->s1_ptr += n;    susp_took(s1_cnt, n);    n = round((final_time - susp->hz1->t0) * susp->hz1->sr -         (susp->hz1->current - susp->hz1_cnt));    susp->hz1_ptr += n;    susp_took(hz1_cnt, n);    n = round((final_time - susp->bw->t0) * susp->bw->sr -         (susp->bw->current - susp->bw_cnt));    susp->bw_ptr += n;    susp_took(bw_cnt, n);    susp->susp.fetch = susp->susp.keep_fetch;    (*(susp->susp.fetch))(susp, snd_list);}void aresonvv_mark(aresonvv_susp_type susp){    sound_xlmark(susp->s1);    sound_xlmark(susp->hz1);    sound_xlmark(susp->bw);}void aresonvv_free(aresonvv_susp_type susp){    sound_unref(susp->s1);    sound_unref(susp->hz1);    sound_unref(susp->bw);    ffree_generic(susp, sizeof(aresonvv_susp_node), "aresonvv_free");}void aresonvv_print_tree(aresonvv_susp_type susp, int n){    indent(n);    stdputstr("s1:");    sound_print_tree_1(susp->s1, n);    indent(n);    stdputstr("hz1:");    sound_print_tree_1(susp->hz1, n);    indent(n);    stdputstr("bw:");    sound_print_tree_1(susp->bw, n);}sound_type snd_make_aresonvv(sound_type s1, sound_type hz1, sound_type bw, int normalization){    register aresonvv_susp_type susp;    rate_type sr = s1->sr;    time_type t0 = MAX(MAX(s1->t0, hz1->t0), bw->t0);    int interp_desc = 0;    sample_type scale_factor = 1.0F;    time_type t0_min = t0;    /* combine scale factors of linear inputs (S1) */    scale_factor *= s1->scale;    s1->scale = 1.0F;    /* try to push scale_factor back to a low sr input */    if (s1->sr < sr) { s1->scale = scale_factor; scale_factor = 1.0F; }    falloc_generic(susp, aresonvv_susp_node, "snd_make_aresonvv");    susp->scale1 = s1->scale;    susp->c3co = 0.0;    susp->c3p1 = 0.0;    susp->c3t4 = 0.0;    susp->omc3 = 0.0;    susp->coshz = 0.0;    susp->c2 = 0.0;    susp->c1 = 0.0;    susp->recompute = false;    susp->normalization = normalization;    susp->y1 = 0.0;    susp->y2 = 0.0;    hz1->scale = (sample_type) (hz1->scale * (PI2 / s1->sr));    bw->scale = (sample_type) (bw->scale * (-PI2 / s1->sr));;    /* select a susp fn based on sample rates */    interp_desc = (interp_desc << 2) + interp_style(s1, sr);    interp_desc = (interp_desc << 2) + interp_style(hz1, sr);    interp_desc = (interp_desc << 2) + interp_style(bw, sr);    switch (interp_desc) {      case INTERP_nnn: /* handled below */      case INTERP_nns: /* handled below */      case INTERP_nsn: /* handled below */      case INTERP_nss: susp->susp.fetch = aresonvv_nss_fetch; break;      case INTERP_nni: /* handled below */      case INTERP_nsi: susp->susp.fetch = aresonvv_nsi_fetch; break;      case INTERP_nnr: /* handled below */      case INTERP_nsr: susp->susp.fetch = aresonvv_nsr_fetch; break;      case INTERP_nin: /* handled below */      case INTERP_nis: susp->susp.fetch = aresonvv_nis_fetch; break;      case INTERP_nii: susp->susp.fetch = aresonvv_nii_fetch; break;      case INTERP_nir: susp->susp.fetch = aresonvv_nir_fetch; break;      case INTERP_nrn: /* handled below */      case INTERP_nrs: susp->susp.fetch = aresonvv_nrs_fetch; break;      case INTERP_nri: susp->susp.fetch = aresonvv_nri_fetch; break;      case INTERP_nrr: susp->susp.fetch = aresonvv_nrr_fetch; break;      default: snd_badsr(); break;    }    susp->terminate_cnt = UNKNOWN;    /* handle unequal start times, if any */    if (t0 < s1->t0) sound_prepend_zeros(s1, t0);    if (t0 < hz1->t0) sound_prepend_zeros(hz1, t0);    if (t0 < bw->t0) sound_prepend_zeros(bw, t0);    /* minimum start time over all inputs: */    t0_min = MIN(s1->t0, MIN(hz1->t0, MIN(bw->t0, t0)));    /* how many samples to toss before t0: */    susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5);    if (susp->susp.toss_cnt > 0) {	susp->susp.keep_fetch = susp->susp.fetch;	susp->susp.fetch = aresonvv_toss_fetch;    }    /* initialize susp state */    susp->susp.free = aresonvv_free;    susp->susp.sr = sr;    susp->susp.t0 = t0;    susp->susp.mark = aresonvv_mark;    susp->susp.print_tree = aresonvv_print_tree;    susp->susp.name = "aresonvv";    susp->logically_stopped = false;    susp->susp.log_stop_cnt = logical_stop_cnt_cvt(s1);    susp->started = false;    susp->susp.current = 0;    susp->s1 = s1;    susp->s1_cnt = 0;    susp->hz1 = hz1;    susp->hz1_cnt = 0;    susp->hz1_pHaSe = 0.0;    susp->hz1_pHaSe_iNcR = hz1->sr / sr;    susp->hz1_n = 0;    susp->output_per_hz1 = sr / hz1->sr;    susp->bw = bw;    susp->bw_cnt = 0;    susp->bw_pHaSe = 0.0;    susp->bw_pHaSe_iNcR = bw->sr / sr;    susp->bw_n = 0;    susp->output_per_bw = sr / bw->sr;    return sound_create((snd_susp_type)susp, t0, sr, scale_factor);}sound_type snd_aresonvv(sound_type s1, sound_type hz1, sound_type bw, int normalization){    sound_type s1_copy = sound_copy(s1);    sound_type hz1_copy = sound_copy(hz1);    sound_type bw_copy = sound_copy(bw);    return snd_make_aresonvv(s1_copy, hz1_copy, bw_copy, normalization);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -