📄 tapv.c
字号:
#include "stdio.h"#ifndef mips#include "stdlib.h"#endif#include "xlisp.h"#include "sound.h"#include "falloc.h"#include "cext.h"#include "tapv.h"void tapv_free();typedef struct tapv_susp_struct { snd_susp_node susp; boolean started; long terminate_cnt; boolean logically_stopped; sound_type s1; long s1_cnt; sample_block_values_type s1_ptr; sound_type vardelay; long vardelay_cnt; sample_block_values_type vardelay_ptr; /* support for interpolation of vardelay */ sample_type vardelay_x1_sample; double vardelay_pHaSe; double vardelay_pHaSe_iNcR; /* support for ramp between samples of vardelay */ double output_per_vardelay; long vardelay_n; double offset; double vdscale; double maxdelay; long bufflen; long index; sample_type *buffer;} tapv_susp_node, *tapv_susp_type;void tapv_sn_fetch(register tapv_susp_type susp, snd_list_type snd_list){ int cnt = 0; /* how many samples computed */ int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register double offset_reg; register double vdscale_reg; register double maxdelay_reg; register long bufflen_reg; register long index_reg; register sample_type * buffer_reg; register sample_block_values_type vardelay_ptr_reg; register sample_type s1_scale_reg = susp->s1->scale; register sample_block_values_type s1_ptr_reg; falloc_sample_block(out, "tapv_sn_fetch"); out_ptr = out->samples; snd_list->block = out; while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past the s1 input sample block: */ susp_check_term_log_samples(s1, s1_ptr, s1_cnt); togo = MIN(togo, susp->s1_cnt); /* don't run past the vardelay input sample block: */ susp_check_term_samples(vardelay, vardelay_ptr, vardelay_cnt); togo = MIN(togo, susp->vardelay_cnt); /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = susp->terminate_cnt - (susp->susp.current + cnt); if (togo == 0) break; } /* don't run past logical stop time */ if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) { int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt); /* break if to_stop == 0 (we're at the logical stop) * AND cnt > 0 (we're not at the beginning of the * output block). */ if (to_stop < togo) { if (to_stop == 0) { if (cnt) { togo = 0; break; } else /* keep togo as is: since cnt == 0, we * can set the logical stop flag on this * output block */ susp->logically_stopped = true; } else /* limit togo so we can start a new * block at the LST */ togo = to_stop; } } n = togo; offset_reg = susp->offset; vdscale_reg = susp->vdscale; maxdelay_reg = susp->maxdelay; bufflen_reg = susp->bufflen; index_reg = susp->index; buffer_reg = susp->buffer; vardelay_ptr_reg = susp->vardelay_ptr; s1_ptr_reg = susp->s1_ptr; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ double phase; long i; phase = *vardelay_ptr_reg++ * vdscale_reg + offset_reg; /* now phase should give number of samples of delay */ if (phase < 0) phase = 0; else if (phase > maxdelay_reg) phase = maxdelay_reg; phase = (double) index_reg - phase; /* now phase is a location in the buffer_reg (before modulo) */ /* Time out to update the buffer_reg: * this is a tricky buffer_reg: buffer_reg[0] == buffer_reg[bufflen_reg] * the logical length is bufflen_reg, but the actual length * is bufflen_reg + 1 to allow for a repeated sample at the * end. This allows for efficient interpolation. */ buffer_reg[index_reg++] = (s1_scale_reg * *s1_ptr_reg++); if (index_reg > bufflen_reg) { buffer_reg[0] = buffer_reg[bufflen_reg]; index_reg = 1; } /* back to the phase calculation: * use conditional instead of modulo */ if (phase < 0) phase += bufflen_reg; i = (long) phase; /* put integer part in i */ phase -= (double) i; /* put fractional part in phase */ *out_ptr_reg++ = (sample_type) (buffer_reg[i] * (1.0 - phase) + buffer_reg[i + 1] * phase);; } while (--n); /* inner loop */ susp->bufflen = bufflen_reg; susp->index = index_reg; /* using vardelay_ptr_reg is a bad idea on RS/6000: */ susp->vardelay_ptr += togo; /* using s1_ptr_reg is a bad idea on RS/6000: */ susp->s1_ptr += togo; out_ptr += togo; susp_took(s1_cnt, togo); susp_took(vardelay_cnt, togo); cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } /* test for logical stop */ if (susp->logically_stopped) { snd_list->logically_stopped = true; } else if (susp->susp.log_stop_cnt == susp->susp.current) { susp->logically_stopped = true; }} /* tapv_sn_fetch */void tapv_si_fetch(register tapv_susp_type susp, snd_list_type snd_list){ int cnt = 0; /* how many samples computed */ sample_type vardelay_x2_sample; int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register double offset_reg; register double vdscale_reg; register double maxdelay_reg; register long bufflen_reg; register long index_reg; register sample_type * buffer_reg; register double vardelay_pHaSe_iNcR_rEg = susp->vardelay_pHaSe_iNcR; register double vardelay_pHaSe_ReG; register sample_type vardelay_x1_sample_reg; register sample_type s1_scale_reg = susp->s1->scale; register sample_block_values_type s1_ptr_reg; falloc_sample_block(out, "tapv_si_fetch"); out_ptr = out->samples; snd_list->block = out; /* make sure sounds are primed with first values */ if (!susp->started) { susp->started = true; susp_check_term_samples(vardelay, vardelay_ptr, vardelay_cnt); susp->vardelay_x1_sample = susp_fetch_sample(vardelay, vardelay_ptr, vardelay_cnt); } susp_check_term_samples(vardelay, vardelay_ptr, vardelay_cnt); vardelay_x2_sample = susp_current_sample(vardelay, vardelay_ptr); while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past the s1 input sample block: */ susp_check_term_log_samples(s1, s1_ptr, s1_cnt); togo = MIN(togo, susp->s1_cnt); /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = susp->terminate_cnt - (susp->susp.current + cnt); if (togo == 0) break; } /* don't run past logical stop time */ if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) { int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt); /* break if to_stop == 0 (we're at the logical stop) * AND cnt > 0 (we're not at the beginning of the * output block). */ if (to_stop < togo) { if (to_stop == 0) { if (cnt) { togo = 0; break; } else /* keep togo as is: since cnt == 0, we * can set the logical stop flag on this * output block */ susp->logically_stopped = true; } else /* limit togo so we can start a new * block at the LST */ togo = to_stop; } } n = togo; offset_reg = susp->offset; vdscale_reg = susp->vdscale; maxdelay_reg = susp->maxdelay; bufflen_reg = susp->bufflen; index_reg = susp->index; buffer_reg = susp->buffer; vardelay_pHaSe_ReG = susp->vardelay_pHaSe; vardelay_x1_sample_reg = susp->vardelay_x1_sample; s1_ptr_reg = susp->s1_ptr; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ double phase; long i; if (vardelay_pHaSe_ReG >= 1.0) { vardelay_x1_sample_reg = vardelay_x2_sample; /* pick up next sample as vardelay_x2_sample: */ susp->vardelay_ptr++; susp_took(vardelay_cnt, 1); vardelay_pHaSe_ReG -= 1.0; susp_check_term_samples_break(vardelay, vardelay_ptr, vardelay_cnt, vardelay_x2_sample); } phase = (vardelay_x1_sample_reg * (1 - vardelay_pHaSe_ReG) + vardelay_x2_sample * vardelay_pHaSe_ReG) * vdscale_reg + offset_reg; /* now phase should give number of samples of delay */ if (phase < 0) phase = 0; else if (phase > maxdelay_reg) phase = maxdelay_reg; phase = (double) index_reg - phase; /* now phase is a location in the buffer_reg (before modulo) */ /* Time out to update the buffer_reg: * this is a tricky buffer_reg: buffer_reg[0] == buffer_reg[bufflen_reg] * the logical length is bufflen_reg, but the actual length * is bufflen_reg + 1 to allow for a repeated sample at the * end. This allows for efficient interpolation. */ buffer_reg[index_reg++] = (s1_scale_reg * *s1_ptr_reg++); if (index_reg > bufflen_reg) { buffer_reg[0] = buffer_reg[bufflen_reg]; index_reg = 1; } /* back to the phase calculation: * use conditional instead of modulo */ if (phase < 0) phase += bufflen_reg; i = (long) phase; /* put integer part in i */ phase -= (double) i; /* put fractional part in phase */ *out_ptr_reg++ = (sample_type) (buffer_reg[i] * (1.0 - phase) + buffer_reg[i + 1] * phase);; vardelay_pHaSe_ReG += vardelay_pHaSe_iNcR_rEg; } while (--n); /* inner loop */ togo -= n; susp->bufflen = bufflen_reg; susp->index = index_reg; susp->vardelay_pHaSe = vardelay_pHaSe_ReG; susp->vardelay_x1_sample = vardelay_x1_sample_reg; /* using s1_ptr_reg is a bad idea on RS/6000: */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -