⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tapv.c

📁 Audacity是一款用於錄音和編輯聲音的、免費的開放源碼軟體。它可以執行於Mac OS X、Microsoft Windows、GNU/Linux和其它作業系統
💻 C
📖 第 1 页 / 共 2 页
字号:
#include "stdio.h"#ifndef mips#include "stdlib.h"#endif#include "xlisp.h"#include "sound.h"#include "falloc.h"#include "cext.h"#include "tapv.h"void tapv_free();typedef struct tapv_susp_struct {    snd_susp_node susp;    boolean started;    long terminate_cnt;    boolean logically_stopped;    sound_type s1;    long s1_cnt;    sample_block_values_type s1_ptr;    sound_type vardelay;    long vardelay_cnt;    sample_block_values_type vardelay_ptr;    /* support for interpolation of vardelay */    sample_type vardelay_x1_sample;    double vardelay_pHaSe;    double vardelay_pHaSe_iNcR;    /* support for ramp between samples of vardelay */    double output_per_vardelay;    long vardelay_n;    double offset;    double vdscale;    double maxdelay;    long bufflen;    long index;    sample_type *buffer;} tapv_susp_node, *tapv_susp_type;void tapv_sn_fetch(register tapv_susp_type susp, snd_list_type snd_list){    int cnt = 0; /* how many samples computed */    int togo;    int n;    sample_block_type out;    register sample_block_values_type out_ptr;    register sample_block_values_type out_ptr_reg;    register double offset_reg;    register double vdscale_reg;    register double maxdelay_reg;    register long bufflen_reg;    register long index_reg;    register sample_type * buffer_reg;    register sample_block_values_type vardelay_ptr_reg;    register sample_type s1_scale_reg = susp->s1->scale;    register sample_block_values_type s1_ptr_reg;    falloc_sample_block(out, "tapv_sn_fetch");    out_ptr = out->samples;    snd_list->block = out;    while (cnt < max_sample_block_len) { /* outer loop */	/* first compute how many samples to generate in inner loop: */	/* don't overflow the output sample block: */	togo = max_sample_block_len - cnt;	/* don't run past the s1 input sample block: */	susp_check_term_log_samples(s1, s1_ptr, s1_cnt);	togo = MIN(togo, susp->s1_cnt);	/* don't run past the vardelay input sample block: */	susp_check_term_samples(vardelay, vardelay_ptr, vardelay_cnt);	togo = MIN(togo, susp->vardelay_cnt);	/* don't run past terminate time */	if (susp->terminate_cnt != UNKNOWN &&	    susp->terminate_cnt <= susp->susp.current + cnt + togo) {	    togo = susp->terminate_cnt - (susp->susp.current + cnt);	    if (togo == 0) break;	}	/* don't run past logical stop time */	if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {	    int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);	    /* break if to_stop == 0 (we're at the logical stop)	     * AND cnt > 0 (we're not at the beginning of the	     * output block).	     */	    if (to_stop < togo) {		if (to_stop == 0) {		    if (cnt) {			togo = 0;			break;		    } else /* keep togo as is: since cnt == 0, we		            * can set the logical stop flag on this		            * output block		            */			susp->logically_stopped = true;		} else /* limit togo so we can start a new		        * block at the LST		        */		    togo = to_stop;	    }	}	n = togo;	offset_reg = susp->offset;	vdscale_reg = susp->vdscale;	maxdelay_reg = susp->maxdelay;	bufflen_reg = susp->bufflen;	index_reg = susp->index;	buffer_reg = susp->buffer;	vardelay_ptr_reg = susp->vardelay_ptr;	s1_ptr_reg = susp->s1_ptr;	out_ptr_reg = out_ptr;	if (n) do { /* the inner sample computation loop */            double phase;            long i;        phase = *vardelay_ptr_reg++ * vdscale_reg + offset_reg;        /* now phase should give number of samples of delay */        if (phase < 0) phase = 0;        else if (phase > maxdelay_reg) phase = maxdelay_reg;        phase = (double) index_reg - phase;        /* now phase is a location in the buffer_reg (before modulo) */        /* Time out to update the buffer_reg:         * this is a tricky buffer_reg: buffer_reg[0] == buffer_reg[bufflen_reg]         * the logical length is bufflen_reg, but the actual length         * is bufflen_reg + 1 to allow for a repeated sample at the         * end. This allows for efficient interpolation.         */         buffer_reg[index_reg++] = (s1_scale_reg * *s1_ptr_reg++);        if (index_reg > bufflen_reg) {            buffer_reg[0] = buffer_reg[bufflen_reg];            index_reg = 1;        }        /* back to the phase calculation:          * use conditional instead of modulo         */        if (phase < 0) phase += bufflen_reg;        i = (long) phase;    /* put integer part in i */        phase -= (double) i; /* put fractional part in phase */	                 *out_ptr_reg++ = (sample_type) (buffer_reg[i] * (1.0 - phase) +                                     buffer_reg[i + 1] * phase);;	} while (--n); /* inner loop */	susp->bufflen = bufflen_reg;	susp->index = index_reg;	/* using vardelay_ptr_reg is a bad idea on RS/6000: */	susp->vardelay_ptr += togo;	/* using s1_ptr_reg is a bad idea on RS/6000: */	susp->s1_ptr += togo;	out_ptr += togo;	susp_took(s1_cnt, togo);	susp_took(vardelay_cnt, togo);	cnt += togo;    } /* outer loop */    /* test for termination */    if (togo == 0 && cnt == 0) {	snd_list_terminate(snd_list);    } else {	snd_list->block_len = cnt;	susp->susp.current += cnt;    }    /* test for logical stop */    if (susp->logically_stopped) {	snd_list->logically_stopped = true;    } else if (susp->susp.log_stop_cnt == susp->susp.current) {	susp->logically_stopped = true;    }} /* tapv_sn_fetch */void tapv_si_fetch(register tapv_susp_type susp, snd_list_type snd_list){    int cnt = 0; /* how many samples computed */    sample_type vardelay_x2_sample;    int togo;    int n;    sample_block_type out;    register sample_block_values_type out_ptr;    register sample_block_values_type out_ptr_reg;    register double offset_reg;    register double vdscale_reg;    register double maxdelay_reg;    register long bufflen_reg;    register long index_reg;    register sample_type * buffer_reg;    register double vardelay_pHaSe_iNcR_rEg = susp->vardelay_pHaSe_iNcR;    register double vardelay_pHaSe_ReG;    register sample_type vardelay_x1_sample_reg;    register sample_type s1_scale_reg = susp->s1->scale;    register sample_block_values_type s1_ptr_reg;    falloc_sample_block(out, "tapv_si_fetch");    out_ptr = out->samples;    snd_list->block = out;    /* make sure sounds are primed with first values */    if (!susp->started) {	susp->started = true;	susp_check_term_samples(vardelay, vardelay_ptr, vardelay_cnt);	susp->vardelay_x1_sample = susp_fetch_sample(vardelay, vardelay_ptr, vardelay_cnt);    }    susp_check_term_samples(vardelay, vardelay_ptr, vardelay_cnt);    vardelay_x2_sample = susp_current_sample(vardelay, vardelay_ptr);    while (cnt < max_sample_block_len) { /* outer loop */	/* first compute how many samples to generate in inner loop: */	/* don't overflow the output sample block: */	togo = max_sample_block_len - cnt;	/* don't run past the s1 input sample block: */	susp_check_term_log_samples(s1, s1_ptr, s1_cnt);	togo = MIN(togo, susp->s1_cnt);	/* don't run past terminate time */	if (susp->terminate_cnt != UNKNOWN &&	    susp->terminate_cnt <= susp->susp.current + cnt + togo) {	    togo = susp->terminate_cnt - (susp->susp.current + cnt);	    if (togo == 0) break;	}	/* don't run past logical stop time */	if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {	    int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);	    /* break if to_stop == 0 (we're at the logical stop)	     * AND cnt > 0 (we're not at the beginning of the	     * output block).	     */	    if (to_stop < togo) {		if (to_stop == 0) {		    if (cnt) {			togo = 0;			break;		    } else /* keep togo as is: since cnt == 0, we		            * can set the logical stop flag on this		            * output block		            */			susp->logically_stopped = true;		} else /* limit togo so we can start a new		        * block at the LST		        */		    togo = to_stop;	    }	}	n = togo;	offset_reg = susp->offset;	vdscale_reg = susp->vdscale;	maxdelay_reg = susp->maxdelay;	bufflen_reg = susp->bufflen;	index_reg = susp->index;	buffer_reg = susp->buffer;	vardelay_pHaSe_ReG = susp->vardelay_pHaSe;	vardelay_x1_sample_reg = susp->vardelay_x1_sample;	s1_ptr_reg = susp->s1_ptr;	out_ptr_reg = out_ptr;	if (n) do { /* the inner sample computation loop */            double phase;            long i;	    if (vardelay_pHaSe_ReG >= 1.0) {		vardelay_x1_sample_reg = vardelay_x2_sample;		/* pick up next sample as vardelay_x2_sample: */		susp->vardelay_ptr++;		susp_took(vardelay_cnt, 1);		vardelay_pHaSe_ReG -= 1.0;		susp_check_term_samples_break(vardelay, vardelay_ptr, vardelay_cnt, vardelay_x2_sample);	    }        phase = 		(vardelay_x1_sample_reg * (1 - vardelay_pHaSe_ReG) + vardelay_x2_sample * vardelay_pHaSe_ReG) * vdscale_reg + offset_reg;        /* now phase should give number of samples of delay */        if (phase < 0) phase = 0;        else if (phase > maxdelay_reg) phase = maxdelay_reg;        phase = (double) index_reg - phase;        /* now phase is a location in the buffer_reg (before modulo) */        /* Time out to update the buffer_reg:         * this is a tricky buffer_reg: buffer_reg[0] == buffer_reg[bufflen_reg]         * the logical length is bufflen_reg, but the actual length         * is bufflen_reg + 1 to allow for a repeated sample at the         * end. This allows for efficient interpolation.         */         buffer_reg[index_reg++] = (s1_scale_reg * *s1_ptr_reg++);        if (index_reg > bufflen_reg) {            buffer_reg[0] = buffer_reg[bufflen_reg];            index_reg = 1;        }        /* back to the phase calculation:          * use conditional instead of modulo         */        if (phase < 0) phase += bufflen_reg;        i = (long) phase;    /* put integer part in i */        phase -= (double) i; /* put fractional part in phase */	                 *out_ptr_reg++ = (sample_type) (buffer_reg[i] * (1.0 - phase) +                                     buffer_reg[i + 1] * phase);;	    vardelay_pHaSe_ReG += vardelay_pHaSe_iNcR_rEg;	} while (--n); /* inner loop */	togo -= n;	susp->bufflen = bufflen_reg;	susp->index = index_reg;	susp->vardelay_pHaSe = vardelay_pHaSe_ReG;	susp->vardelay_x1_sample = vardelay_x1_sample_reg;	/* using s1_ptr_reg is a bad idea on RS/6000: */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -