⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 alpassvv.c

📁 Audacity是一款用於錄音和編輯聲音的、免費的開放源碼軟體。它可以執行於Mac OS X、Microsoft Windows、GNU/Linux和其它作業系統
💻 C
📖 第 1 页 / 共 2 页
字号:
#include "stdio.h"#ifndef mips#include "stdlib.h"#endif#include "xlisp.h"#include "sound.h"#include "falloc.h"#include "cext.h"#include "alpassvv.h"void alpassvv_free();typedef struct alpassvv_susp_struct {    snd_susp_node susp;    long terminate_cnt;    sound_type input;    long input_cnt;    sample_block_values_type input_ptr;    sound_type delaysnd;    long delaysnd_cnt;    sample_block_values_type delaysnd_ptr;    sound_type feedback;    long feedback_cnt;    sample_block_values_type feedback_ptr;    float delay_scale_factor;    long buflen;    sample_type *delaybuf;    sample_type *delayptr;    sample_type *endptr;} alpassvv_susp_node, *alpassvv_susp_type;void alpassvv_nnn_fetch(register alpassvv_susp_type susp, snd_list_type snd_list){    int cnt = 0; /* how many samples computed */    int togo;    int n;    sample_block_type out;    register sample_block_values_type out_ptr;    register sample_block_values_type out_ptr_reg;    register float delay_scale_factor_reg;    register long buflen_reg;    register sample_type * delayptr_reg;    register sample_type * endptr_reg;    register sample_block_values_type feedback_ptr_reg;    register sample_block_values_type delaysnd_ptr_reg;    register sample_block_values_type input_ptr_reg;    falloc_sample_block(out, "alpassvv_nnn_fetch");    out_ptr = out->samples;    snd_list->block = out;    while (cnt < max_sample_block_len) { /* outer loop */	/* first compute how many samples to generate in inner loop: */	/* don't overflow the output sample block: */	togo = max_sample_block_len - cnt;	/* don't run past the input input sample block: */	susp_check_term_samples(input, input_ptr, input_cnt);	togo = MIN(togo, susp->input_cnt);	/* don't run past the delaysnd input sample block: */	susp_check_samples(delaysnd, delaysnd_ptr, delaysnd_cnt);	togo = MIN(togo, susp->delaysnd_cnt);	/* don't run past the feedback input sample block: */	susp_check_samples(feedback, feedback_ptr, feedback_cnt);	togo = MIN(togo, susp->feedback_cnt);	/* don't run past terminate time */	if (susp->terminate_cnt != UNKNOWN &&	    susp->terminate_cnt <= susp->susp.current + cnt + togo) {	    togo = susp->terminate_cnt - (susp->susp.current + cnt);	    if (togo == 0) break;	}	n = togo;	delay_scale_factor_reg = susp->delay_scale_factor;	buflen_reg = susp->buflen;	delayptr_reg = susp->delayptr;	endptr_reg = susp->endptr;	feedback_ptr_reg = susp->feedback_ptr;	delaysnd_ptr_reg = susp->delaysnd_ptr;	input_ptr_reg = susp->input_ptr;	out_ptr_reg = out_ptr;	if (n) do { /* the inner sample computation loop */        register sample_type y, z, delaysamp;        register int delayi;        register sample_type *yptr;        /* compute where to read y, we want y to be delay_snd samples         * after delay_ptr, where we write the new sample. First,          * conver from seconds to samples. Note: don't use actual sound_type         * names in comments! The translator isn't smart enough.         */        register sample_type fb = *feedback_ptr_reg++;        delaysamp = *delaysnd_ptr_reg++ * delay_scale_factor_reg;        delayi = (int) delaysamp; /* get integer part */        delaysamp = delaysamp - delayi; /* get phase */        yptr = delayptr_reg + buflen_reg - (delayi + 1);        if (yptr >= endptr_reg) yptr -= buflen_reg;        /* now get y, the out-put of the delay, using interpolation */        /* note that as phase increases, we use more of yptr[0] because           positive phase means longer buffer means read earlier sample */        y = (float) ((yptr[0] * delaysamp) + (yptr[1] * (1.0 - delaysamp)));        /* WARNING: no check to keep delaysamp in range, so do this in LISP */        *delayptr_reg++ = z = (sample_type) (fb * y + *input_ptr_reg++);        /* Time out to update the buffer:         * this is a tricky buffer: buffer[0] == buffer[bufflen]         * the logical length is bufflen, but the actual length         * is bufflen + 1 to allow for a repeated sample at the         * end. This allows for efficient interpolation.         */        if (delayptr_reg > endptr_reg) {            delayptr_reg = susp->delaybuf;            *delayptr_reg++ = *endptr_reg;        }        *out_ptr_reg++ = (sample_type) (y - fb * z);;	} while (--n); /* inner loop */	susp->buflen = buflen_reg;	susp->delayptr = delayptr_reg;	/* using feedback_ptr_reg is a bad idea on RS/6000: */	susp->feedback_ptr += togo;	/* using delaysnd_ptr_reg is a bad idea on RS/6000: */	susp->delaysnd_ptr += togo;	/* using input_ptr_reg is a bad idea on RS/6000: */	susp->input_ptr += togo;	out_ptr += togo;	susp_took(input_cnt, togo);	susp_took(delaysnd_cnt, togo);	susp_took(feedback_cnt, togo);	cnt += togo;    } /* outer loop */    /* test for termination */    if (togo == 0 && cnt == 0) {	snd_list_terminate(snd_list);    } else {	snd_list->block_len = cnt;	susp->susp.current += cnt;    }} /* alpassvv_nnn_fetch */void alpassvv_nns_fetch(register alpassvv_susp_type susp, snd_list_type snd_list){    int cnt = 0; /* how many samples computed */    int togo;    int n;    sample_block_type out;    register sample_block_values_type out_ptr;    register sample_block_values_type out_ptr_reg;    register float delay_scale_factor_reg;    register long buflen_reg;    register sample_type * delayptr_reg;    register sample_type * endptr_reg;    register sample_type feedback_scale_reg = susp->feedback->scale;    register sample_block_values_type feedback_ptr_reg;    register sample_block_values_type delaysnd_ptr_reg;    register sample_block_values_type input_ptr_reg;    falloc_sample_block(out, "alpassvv_nns_fetch");    out_ptr = out->samples;    snd_list->block = out;    while (cnt < max_sample_block_len) { /* outer loop */	/* first compute how many samples to generate in inner loop: */	/* don't overflow the output sample block: */	togo = max_sample_block_len - cnt;	/* don't run past the input input sample block: */	susp_check_term_samples(input, input_ptr, input_cnt);	togo = MIN(togo, susp->input_cnt);	/* don't run past the delaysnd input sample block: */	susp_check_samples(delaysnd, delaysnd_ptr, delaysnd_cnt);	togo = MIN(togo, susp->delaysnd_cnt);	/* don't run past the feedback input sample block: */	susp_check_samples(feedback, feedback_ptr, feedback_cnt);	togo = MIN(togo, susp->feedback_cnt);	/* don't run past terminate time */	if (susp->terminate_cnt != UNKNOWN &&	    susp->terminate_cnt <= susp->susp.current + cnt + togo) {	    togo = susp->terminate_cnt - (susp->susp.current + cnt);	    if (togo == 0) break;	}	n = togo;	delay_scale_factor_reg = susp->delay_scale_factor;	buflen_reg = susp->buflen;	delayptr_reg = susp->delayptr;	endptr_reg = susp->endptr;	feedback_ptr_reg = susp->feedback_ptr;	delaysnd_ptr_reg = susp->delaysnd_ptr;	input_ptr_reg = susp->input_ptr;	out_ptr_reg = out_ptr;	if (n) do { /* the inner sample computation loop */        register sample_type y, z, delaysamp;        register int delayi;        register sample_type *yptr;        /* compute where to read y, we want y to be delay_snd samples         * after delay_ptr, where we write the new sample. First,          * conver from seconds to samples. Note: don't use actual sound_type         * names in comments! The translator isn't smart enough.         */        register sample_type fb = (feedback_scale_reg * *feedback_ptr_reg++);        delaysamp = *delaysnd_ptr_reg++ * delay_scale_factor_reg;        delayi = (int) delaysamp; /* get integer part */        delaysamp = delaysamp - delayi; /* get phase */        yptr = delayptr_reg + buflen_reg - (delayi + 1);        if (yptr >= endptr_reg) yptr -= buflen_reg;        /* now get y, the out-put of the delay, using interpolation */        /* note that as phase increases, we use more of yptr[0] because           positive phase means longer buffer means read earlier sample */        y = (float) ((yptr[0] * delaysamp) + (yptr[1] * (1.0 - delaysamp)));        /* WARNING: no check to keep delaysamp in range, so do this in LISP */        *delayptr_reg++ = z = (sample_type) (fb * y + *input_ptr_reg++);        /* Time out to update the buffer:         * this is a tricky buffer: buffer[0] == buffer[bufflen]         * the logical length is bufflen, but the actual length         * is bufflen + 1 to allow for a repeated sample at the         * end. This allows for efficient interpolation.         */        if (delayptr_reg > endptr_reg) {            delayptr_reg = susp->delaybuf;            *delayptr_reg++ = *endptr_reg;        }        *out_ptr_reg++ = (sample_type) (y - fb * z);;	} while (--n); /* inner loop */	susp->buflen = buflen_reg;	susp->delayptr = delayptr_reg;	/* using feedback_ptr_reg is a bad idea on RS/6000: */	susp->feedback_ptr += togo;	/* using delaysnd_ptr_reg is a bad idea on RS/6000: */	susp->delaysnd_ptr += togo;	/* using input_ptr_reg is a bad idea on RS/6000: */	susp->input_ptr += togo;	out_ptr += togo;	susp_took(input_cnt, togo);	susp_took(delaysnd_cnt, togo);	susp_took(feedback_cnt, togo);	cnt += togo;    } /* outer loop */    /* test for termination */    if (togo == 0 && cnt == 0) {	snd_list_terminate(snd_list);    } else {	snd_list->block_len = cnt;	susp->susp.current += cnt;    }} /* alpassvv_nns_fetch */void alpassvv_nsn_fetch(register alpassvv_susp_type susp, snd_list_type snd_list){    int cnt = 0; /* how many samples computed */    int togo;    int n;    sample_block_type out;    register sample_block_values_type out_ptr;    register sample_block_values_type out_ptr_reg;    register float delay_scale_factor_reg;    register long buflen_reg;    register sample_type * delayptr_reg;    register sample_type * endptr_reg;    register sample_block_values_type feedback_ptr_reg;    register sample_type delaysnd_scale_reg = susp->delaysnd->scale;    register sample_block_values_type delaysnd_ptr_reg;    register sample_block_values_type input_ptr_reg;    falloc_sample_block(out, "alpassvv_nsn_fetch");    out_ptr = out->samples;    snd_list->block = out;    while (cnt < max_sample_block_len) { /* outer loop */	/* first compute how many samples to generate in inner loop: */	/* don't overflow the output sample block: */	togo = max_sample_block_len - cnt;	/* don't run past the input input sample block: */	susp_check_term_samples(input, input_ptr, input_cnt);	togo = MIN(togo, susp->input_cnt);	/* don't run past the delaysnd input sample block: */	susp_check_samples(delaysnd, delaysnd_ptr, delaysnd_cnt);	togo = MIN(togo, susp->delaysnd_cnt);	/* don't run past the feedback input sample block: */	susp_check_samples(feedback, feedback_ptr, feedback_cnt);	togo = MIN(togo, susp->feedback_cnt);	/* don't run past terminate time */	if (susp->terminate_cnt != UNKNOWN &&	    susp->terminate_cnt <= susp->susp.current + cnt + togo) {	    togo = susp->terminate_cnt - (susp->susp.current + cnt);	    if (togo == 0) break;	}	n = togo;	delay_scale_factor_reg = susp->delay_scale_factor;	buflen_reg = susp->buflen;	delayptr_reg = susp->delayptr;	endptr_reg = susp->endptr;	feedback_ptr_reg = susp->feedback_ptr;	delaysnd_ptr_reg = susp->delaysnd_ptr;	input_ptr_reg = susp->input_ptr;	out_ptr_reg = out_ptr;	if (n) do { /* the inner sample computation loop */        register sample_type y, z, delaysamp;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -