📄 aresonvc.c
字号:
#include "stdio.h"#ifndef mips#include "stdlib.h"#endif#include "xlisp.h"#include "sound.h"#include "falloc.h"#include "cext.h"#include "aresonvc.h"void aresonvc_free();typedef struct aresonvc_susp_struct { snd_susp_node susp; boolean started; long terminate_cnt; boolean logically_stopped; sound_type s1; long s1_cnt; sample_block_values_type s1_ptr; sound_type hz; long hz_cnt; sample_block_values_type hz_ptr; /* support for interpolation of hz */ sample_type hz_x1_sample; double hz_pHaSe; double hz_pHaSe_iNcR; /* support for ramp between samples of hz */ double output_per_hz; long hz_n; double c3co; double c3p1; double c3t4; double omc3; double c2; double c1; int normalization; double y1; double y2;} aresonvc_susp_node, *aresonvc_susp_type;void aresonvc_ns_fetch(register aresonvc_susp_type susp, snd_list_type snd_list){ int cnt = 0; /* how many samples computed */ int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register double c3co_reg; register double c3p1_reg; register double c3t4_reg; register double omc3_reg; register double c2_reg; register double c1_reg; register int normalization_reg; register double y1_reg; register double y2_reg; register sample_type hz_scale_reg = susp->hz->scale; register sample_block_values_type hz_ptr_reg; register sample_block_values_type s1_ptr_reg; falloc_sample_block(out, "aresonvc_ns_fetch"); out_ptr = out->samples; snd_list->block = out; while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past the s1 input sample block: */ susp_check_term_log_samples(s1, s1_ptr, s1_cnt); togo = MIN(togo, susp->s1_cnt); /* don't run past the hz input sample block: */ susp_check_term_samples(hz, hz_ptr, hz_cnt); togo = MIN(togo, susp->hz_cnt); /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = susp->terminate_cnt - (susp->susp.current + cnt); if (togo == 0) break; } /* don't run past logical stop time */ if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) { int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt); /* break if to_stop == 0 (we're at the logical stop) * AND cnt > 0 (we're not at the beginning of the * output block). */ if (to_stop < togo) { if (to_stop == 0) { if (cnt) { togo = 0; break; } else /* keep togo as is: since cnt == 0, we * can set the logical stop flag on this * output block */ susp->logically_stopped = true; } else /* limit togo so we can start a new * block at the LST */ togo = to_stop; } } n = togo; c3co_reg = susp->c3co; c3p1_reg = susp->c3p1; c3t4_reg = susp->c3t4; omc3_reg = susp->omc3; c2_reg = susp->c2; c1_reg = susp->c1; normalization_reg = susp->normalization; y1_reg = susp->y1; y2_reg = susp->y2; hz_ptr_reg = susp->hz_ptr; s1_ptr_reg = susp->s1_ptr; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ register double y0, current; c2_reg = c3t4_reg * cos((hz_scale_reg * *hz_ptr_reg++)) / c3p1_reg; c1_reg = (normalization_reg == 0 ? 0.0 : (normalization_reg == 1 ? 1.0 - omc3_reg * sqrt(1.0 - c2_reg * c2_reg / c3t4_reg) : 1.0 - sqrt(c3p1_reg * c3p1_reg - c2_reg * c2_reg) * omc3_reg / c3p1_reg));current = *s1_ptr_reg++; y0 = c1_reg * current + c2_reg * y1_reg - c3co_reg * y2_reg; *out_ptr_reg++ = (sample_type) y0; y2_reg = y1_reg; y1_reg = y0 - current; } while (--n); /* inner loop */ susp->y1 = y1_reg; susp->y2 = y2_reg; /* using hz_ptr_reg is a bad idea on RS/6000: */ susp->hz_ptr += togo; /* using s1_ptr_reg is a bad idea on RS/6000: */ susp->s1_ptr += togo; out_ptr += togo; susp_took(s1_cnt, togo); susp_took(hz_cnt, togo); cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } /* test for logical stop */ if (susp->logically_stopped) { snd_list->logically_stopped = true; } else if (susp->susp.log_stop_cnt == susp->susp.current) { susp->logically_stopped = true; }} /* aresonvc_ns_fetch */void aresonvc_ni_fetch(register aresonvc_susp_type susp, snd_list_type snd_list){ int cnt = 0; /* how many samples computed */ int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register double c3co_reg; register double c3p1_reg; register double c3t4_reg; register double omc3_reg; register double c2_reg; register double c1_reg; register int normalization_reg; register double y1_reg; register double y2_reg; register double hz_pHaSe_iNcR_rEg = susp->hz_pHaSe_iNcR; register double hz_pHaSe_ReG; register sample_type hz_x1_sample_reg; register sample_block_values_type s1_ptr_reg; falloc_sample_block(out, "aresonvc_ni_fetch"); out_ptr = out->samples; snd_list->block = out; /* make sure sounds are primed with first values */ if (!susp->started) { susp->started = true; susp_check_term_samples(hz, hz_ptr, hz_cnt); susp->hz_x1_sample = susp_fetch_sample(hz, hz_ptr, hz_cnt); susp->c2 = susp->c3t4 * cos(susp->hz_x1_sample) / susp->c3p1; susp->c1 = (susp->normalization == 0 ? 0.0 : (susp->normalization == 1 ? 1.0 - susp->omc3 * sqrt(1.0 - susp->c2 * susp->c2 / susp->c3t4) : 1.0 - sqrt(susp->c3p1 * susp->c3p1 - susp->c2 * susp->c2) * susp->omc3 / susp->c3p1)); } while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past the s1 input sample block: */ susp_check_term_log_samples(s1, s1_ptr, s1_cnt); togo = MIN(togo, susp->s1_cnt); /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = susp->terminate_cnt - (susp->susp.current + cnt); if (togo == 0) break; } /* don't run past logical stop time */ if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) { int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt); /* break if to_stop == 0 (we're at the logical stop) * AND cnt > 0 (we're not at the beginning of the * output block). */ if (to_stop < togo) { if (to_stop == 0) { if (cnt) { togo = 0; break; } else /* keep togo as is: since cnt == 0, we * can set the logical stop flag on this * output block */ susp->logically_stopped = true; } else /* limit togo so we can start a new * block at the LST */ togo = to_stop; } } n = togo; c3co_reg = susp->c3co; c3p1_reg = susp->c3p1; c3t4_reg = susp->c3t4; omc3_reg = susp->omc3; c2_reg = susp->c2; c1_reg = susp->c1; normalization_reg = susp->normalization; y1_reg = susp->y1; y2_reg = susp->y2; hz_pHaSe_ReG = susp->hz_pHaSe; hz_x1_sample_reg = susp->hz_x1_sample; s1_ptr_reg = susp->s1_ptr; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ register double y0, current; if (hz_pHaSe_ReG >= 1.0) {/* fixup-depends hz */ /* pick up next sample as hz_x1_sample: */ susp->hz_ptr++; susp_took(hz_cnt, 1); hz_pHaSe_ReG -= 1.0; susp_check_term_samples_break(hz, hz_ptr, hz_cnt, hz_x1_sample_reg); hz_x1_sample_reg = susp_current_sample(hz, hz_ptr); c2_reg = susp->c2 = c3t4_reg * cos(hz_x1_sample_reg) / c3p1_reg; c1_reg = susp->c1 = (normalization_reg == 0 ? 0.0 : (normalization_reg == 1 ? 1.0 - omc3_reg * sqrt(1.0 - c2_reg * c2_reg / c3t4_reg) : 1.0 - sqrt(c3p1_reg * c3p1_reg - c2_reg * c2_reg) * omc3_reg / c3p1_reg)); }current = *s1_ptr_reg++; y0 = c1_reg * current + c2_reg * y1_reg - c3co_reg * y2_reg; *out_ptr_reg++ = (sample_type) y0; y2_reg = y1_reg; y1_reg = y0 - current; hz_pHaSe_ReG += hz_pHaSe_iNcR_rEg; } while (--n); /* inner loop */ togo -= n; susp->y1 = y1_reg; susp->y2 = y2_reg; susp->hz_pHaSe = hz_pHaSe_ReG; susp->hz_x1_sample = hz_x1_sample_reg; /* using s1_ptr_reg is a bad idea on RS/6000: */ susp->s1_ptr += togo; out_ptr += togo; susp_took(s1_cnt, togo); cnt += togo;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -