⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 alpassvc.c

📁 Audacity是一款用於錄音和編輯聲音的、免費的開放源碼軟體。它可以執行於Mac OS X、Microsoft Windows、GNU/Linux和其它作業系統
💻 C
字号:
#include "stdio.h"#ifndef mips#include "stdlib.h"#endif#include "xlisp.h"#include "sound.h"#include "falloc.h"#include "cext.h"#include "alpassvc.h"void alpassvc_free();typedef struct alpassvc_susp_struct {    snd_susp_node susp;    long terminate_cnt;    sound_type input;    long input_cnt;    sample_block_values_type input_ptr;    sound_type delaysnd;    long delaysnd_cnt;    sample_block_values_type delaysnd_ptr;    float delay_scale_factor;    double feedback;    long buflen;    sample_type *delaybuf;    sample_type *delayptr;    sample_type *endptr;} alpassvc_susp_node, *alpassvc_susp_type;void alpassvc_nn_fetch(register alpassvc_susp_type susp, snd_list_type snd_list){    int cnt = 0; /* how many samples computed */    int togo;    int n;    sample_block_type out;    register sample_block_values_type out_ptr;    register sample_block_values_type out_ptr_reg;    register float delay_scale_factor_reg;    register double feedback_reg;    register long buflen_reg;    register sample_type * delayptr_reg;    register sample_type * endptr_reg;    register sample_block_values_type delaysnd_ptr_reg;    register sample_block_values_type input_ptr_reg;    falloc_sample_block(out, "alpassvc_nn_fetch");    out_ptr = out->samples;    snd_list->block = out;    while (cnt < max_sample_block_len) { /* outer loop */	/* first compute how many samples to generate in inner loop: */	/* don't overflow the output sample block: */	togo = max_sample_block_len - cnt;	/* don't run past the input input sample block: */	susp_check_term_samples(input, input_ptr, input_cnt);	togo = MIN(togo, susp->input_cnt);	/* don't run past the delaysnd input sample block: */	susp_check_samples(delaysnd, delaysnd_ptr, delaysnd_cnt);	togo = MIN(togo, susp->delaysnd_cnt);	/* don't run past terminate time */	if (susp->terminate_cnt != UNKNOWN &&	    susp->terminate_cnt <= susp->susp.current + cnt + togo) {	    togo = susp->terminate_cnt - (susp->susp.current + cnt);	    if (togo == 0) break;	}	n = togo;	delay_scale_factor_reg = susp->delay_scale_factor;	feedback_reg = susp->feedback;	buflen_reg = susp->buflen;	delayptr_reg = susp->delayptr;	endptr_reg = susp->endptr;	delaysnd_ptr_reg = susp->delaysnd_ptr;	input_ptr_reg = susp->input_ptr;	out_ptr_reg = out_ptr;	if (n) do { /* the inner sample computation loop */        register sample_type y, z, delaysamp;        register int delayi;        register sample_type *yptr;        /* compute where to read y, we want y to be delay_snd samples         * after delay_ptr, where we write the new sample. First,          * conver from seconds to samples. Note: don't use actual sound_type         * names in comments! The translator isn't smart enough.         */        delaysamp = *delaysnd_ptr_reg++ * delay_scale_factor_reg;        delayi = (int) delaysamp; /* get integer part */        delaysamp = delaysamp - delayi; /* get phase */        yptr = delayptr_reg + buflen_reg - (delayi + 1);        if (yptr >= endptr_reg) yptr -= buflen_reg;        /* now get y, the out-put of the delay, using interpolation */        /* note that as phase increases, we use more of yptr[0] because           positive phase means longer buffer means read earlier sample */        y = (float) ((yptr[0] * delaysamp) + (yptr[1] * (1.0 - delaysamp)));        /* WARNING: no check to keep delaysamp in range, so do this in LISP */        *delayptr_reg++ = z = (sample_type) (feedback_reg * y + *input_ptr_reg++);        /* Time out to update the buffer:         * this is a tricky buffer: buffer[0] == buffer[bufflen]         * the logical length is bufflen, but the actual length         * is bufflen + 1 to allow for a repeated sample at the         * end. This allows for efficient interpolation.         */        if (delayptr_reg > endptr_reg) {            delayptr_reg = susp->delaybuf;            *delayptr_reg++ = *endptr_reg;        }        *out_ptr_reg++ = (sample_type) (y - feedback_reg * z);;	} while (--n); /* inner loop */	susp->buflen = buflen_reg;	susp->delayptr = delayptr_reg;	/* using delaysnd_ptr_reg is a bad idea on RS/6000: */	susp->delaysnd_ptr += togo;	/* using input_ptr_reg is a bad idea on RS/6000: */	susp->input_ptr += togo;	out_ptr += togo;	susp_took(input_cnt, togo);	susp_took(delaysnd_cnt, togo);	cnt += togo;    } /* outer loop */    /* test for termination */    if (togo == 0 && cnt == 0) {	snd_list_terminate(snd_list);    } else {	snd_list->block_len = cnt;	susp->susp.current += cnt;    }} /* alpassvc_nn_fetch */void alpassvc_ns_fetch(register alpassvc_susp_type susp, snd_list_type snd_list){    int cnt = 0; /* how many samples computed */    int togo;    int n;    sample_block_type out;    register sample_block_values_type out_ptr;    register sample_block_values_type out_ptr_reg;    register float delay_scale_factor_reg;    register double feedback_reg;    register long buflen_reg;    register sample_type * delayptr_reg;    register sample_type * endptr_reg;    register sample_type delaysnd_scale_reg = susp->delaysnd->scale;    register sample_block_values_type delaysnd_ptr_reg;    register sample_block_values_type input_ptr_reg;    falloc_sample_block(out, "alpassvc_ns_fetch");    out_ptr = out->samples;    snd_list->block = out;    while (cnt < max_sample_block_len) { /* outer loop */	/* first compute how many samples to generate in inner loop: */	/* don't overflow the output sample block: */	togo = max_sample_block_len - cnt;	/* don't run past the input input sample block: */	susp_check_term_samples(input, input_ptr, input_cnt);	togo = MIN(togo, susp->input_cnt);	/* don't run past the delaysnd input sample block: */	susp_check_samples(delaysnd, delaysnd_ptr, delaysnd_cnt);	togo = MIN(togo, susp->delaysnd_cnt);	/* don't run past terminate time */	if (susp->terminate_cnt != UNKNOWN &&	    susp->terminate_cnt <= susp->susp.current + cnt + togo) {	    togo = susp->terminate_cnt - (susp->susp.current + cnt);	    if (togo == 0) break;	}	n = togo;	delay_scale_factor_reg = susp->delay_scale_factor;	feedback_reg = susp->feedback;	buflen_reg = susp->buflen;	delayptr_reg = susp->delayptr;	endptr_reg = susp->endptr;	delaysnd_ptr_reg = susp->delaysnd_ptr;	input_ptr_reg = susp->input_ptr;	out_ptr_reg = out_ptr;	if (n) do { /* the inner sample computation loop */        register sample_type y, z, delaysamp;        register int delayi;        register sample_type *yptr;        /* compute where to read y, we want y to be delay_snd samples         * after delay_ptr, where we write the new sample. First,          * conver from seconds to samples. Note: don't use actual sound_type         * names in comments! The translator isn't smart enough.         */        delaysamp = (delaysnd_scale_reg * *delaysnd_ptr_reg++) * delay_scale_factor_reg;        delayi = (int) delaysamp; /* get integer part */        delaysamp = delaysamp - delayi; /* get phase */        yptr = delayptr_reg + buflen_reg - (delayi + 1);        if (yptr >= endptr_reg) yptr -= buflen_reg;        /* now get y, the out-put of the delay, using interpolation */        /* note that as phase increases, we use more of yptr[0] because           positive phase means longer buffer means read earlier sample */        y = (float) ((yptr[0] * delaysamp) + (yptr[1] * (1.0 - delaysamp)));        /* WARNING: no check to keep delaysamp in range, so do this in LISP */        *delayptr_reg++ = z = (sample_type) (feedback_reg * y + *input_ptr_reg++);        /* Time out to update the buffer:         * this is a tricky buffer: buffer[0] == buffer[bufflen]         * the logical length is bufflen, but the actual length         * is bufflen + 1 to allow for a repeated sample at the         * end. This allows for efficient interpolation.         */        if (delayptr_reg > endptr_reg) {            delayptr_reg = susp->delaybuf;            *delayptr_reg++ = *endptr_reg;        }        *out_ptr_reg++ = (sample_type) (y - feedback_reg * z);;	} while (--n); /* inner loop */	susp->buflen = buflen_reg;	susp->delayptr = delayptr_reg;	/* using delaysnd_ptr_reg is a bad idea on RS/6000: */	susp->delaysnd_ptr += togo;	/* using input_ptr_reg is a bad idea on RS/6000: */	susp->input_ptr += togo;	out_ptr += togo;	susp_took(input_cnt, togo);	susp_took(delaysnd_cnt, togo);	cnt += togo;    } /* outer loop */    /* test for termination */    if (togo == 0 && cnt == 0) {	snd_list_terminate(snd_list);    } else {	snd_list->block_len = cnt;	susp->susp.current += cnt;    }} /* alpassvc_ns_fetch */void alpassvc_toss_fetch(susp, snd_list)  register alpassvc_susp_type susp;  snd_list_type snd_list;{    long final_count = susp->susp.toss_cnt;    time_type final_time = susp->susp.t0;    long n;    /* fetch samples from input up to final_time for this block of zeros */    while ((round((final_time - susp->input->t0) * susp->input->sr)) >=	   susp->input->current)	susp_get_samples(input, input_ptr, input_cnt);    /* fetch samples from delaysnd up to final_time for this block of zeros */    while ((round((final_time - susp->delaysnd->t0) * susp->delaysnd->sr)) >=	   susp->delaysnd->current)	susp_get_samples(delaysnd, delaysnd_ptr, delaysnd_cnt);    /* convert to normal processing when we hit final_count */    /* we want each signal positioned at final_time */    n = round((final_time - susp->input->t0) * susp->input->sr -         (susp->input->current - susp->input_cnt));    susp->input_ptr += n;    susp_took(input_cnt, n);    n = round((final_time - susp->delaysnd->t0) * susp->delaysnd->sr -         (susp->delaysnd->current - susp->delaysnd_cnt));    susp->delaysnd_ptr += n;    susp_took(delaysnd_cnt, n);    susp->susp.fetch = susp->susp.keep_fetch;    (*(susp->susp.fetch))(susp, snd_list);}void alpassvc_mark(alpassvc_susp_type susp){    sound_xlmark(susp->input);    sound_xlmark(susp->delaysnd);}void alpassvc_free(alpassvc_susp_type susp){free(susp->delaybuf);    sound_unref(susp->input);    sound_unref(susp->delaysnd);    ffree_generic(susp, sizeof(alpassvc_susp_node), "alpassvc_free");}void alpassvc_print_tree(alpassvc_susp_type susp, int n){    indent(n);    stdputstr("input:");    sound_print_tree_1(susp->input, n);    indent(n);    stdputstr("delaysnd:");    sound_print_tree_1(susp->delaysnd, n);}sound_type snd_make_alpassvc(sound_type input, sound_type delaysnd, double feedback, double maxdelay){    register alpassvc_susp_type susp;    rate_type sr = MAX(input->sr, delaysnd->sr);    time_type t0 = MAX(input->t0, delaysnd->t0);    int interp_desc = 0;    sample_type scale_factor = 1.0F;    time_type t0_min = t0;    /* combine scale factors of linear inputs (INPUT) */    scale_factor *= input->scale;    input->scale = 1.0F;    /* try to push scale_factor back to a low sr input */    if (input->sr < sr) { input->scale = scale_factor; scale_factor = 1.0F; }    falloc_generic(susp, alpassvc_susp_node, "snd_make_alpassvc");    susp->delay_scale_factor = (float) (input->sr * delaysnd->scale);    susp->feedback = feedback;    susp->buflen = MAX(2, (long) (input->sr * maxdelay + 2.5));    susp->delaybuf = (sample_type *) calloc (susp->buflen + 1, sizeof(sample_type));    susp->delayptr = susp->delaybuf;    susp->endptr = susp->delaybuf + susp->buflen;    /* select a susp fn based on sample rates */    interp_desc = (interp_desc << 2) + interp_style(input, sr);    interp_desc = (interp_desc << 2) + interp_style(delaysnd, sr);    switch (interp_desc) {      case INTERP_nn: susp->susp.fetch = alpassvc_nn_fetch; break;      case INTERP_ns: susp->susp.fetch = alpassvc_ns_fetch; break;      default: snd_badsr(); break;    }    susp->terminate_cnt = UNKNOWN;    /* handle unequal start times, if any */    if (t0 < input->t0) sound_prepend_zeros(input, t0);    if (t0 < delaysnd->t0) sound_prepend_zeros(delaysnd, t0);    /* minimum start time over all inputs: */    t0_min = MIN(input->t0, MIN(delaysnd->t0, t0));    /* how many samples to toss before t0: */    susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5);    if (susp->susp.toss_cnt > 0) {	susp->susp.keep_fetch = susp->susp.fetch;	susp->susp.fetch = alpassvc_toss_fetch;    }    /* initialize susp state */    susp->susp.free = alpassvc_free;    susp->susp.sr = sr;    susp->susp.t0 = t0;    susp->susp.mark = alpassvc_mark;    susp->susp.print_tree = alpassvc_print_tree;    susp->susp.name = "alpassvc";    susp->susp.log_stop_cnt = UNKNOWN;    susp->susp.current = 0;    susp->input = input;    susp->input_cnt = 0;    susp->delaysnd = delaysnd;    susp->delaysnd_cnt = 0;    return sound_create((snd_susp_type)susp, t0, sr, scale_factor);}sound_type snd_alpassvc(sound_type input, sound_type delaysnd, double feedback, double maxdelay){    sound_type input_copy = sound_copy(input);    sound_type delaysnd_copy = sound_copy(delaysnd);    return snd_make_alpassvc(input_copy, delaysnd_copy, feedback, maxdelay);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -