⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ifft.c

📁 Audacity是一款用於錄音和編輯聲音的、免費的開放源碼軟體。它可以執行於Mac OS X、Microsoft Windows、GNU/Linux和其它作業系統
💻 C
字号:
#include "stdio.h"#ifndef mips#include "stdlib.h"#endif#include "xlisp.h"#include "sound.h"#include "falloc.h"#include "cext.h"#include "ifft.h"void ifft_free();typedef struct ifft_susp_struct {    snd_susp_node susp;    long index;    long length;    LVAL array;    long window_len;    sample_type *outbuf;    LVAL src;    long stepsize;    sample_type *window;    sample_type *samples;    table_type table;} ifft_susp_node, *ifft_susp_type;/* index: index into outbuf whree we get output samples * length: size of the frame, window, and outbuf; half size of samples * array: spectral frame goes here (why not a local var?) * window_len: size of window, should equal length * outbuf: real part of samples are multiplied by window and added to *          outbuf (after shifting) * src: send :NEXT to this object to get next frame * stepsize: shift by this many and add each frame * samples: result of ifft goes here, real and imag * window: multiply samples by window if any  * * IMPLEMENTATION NOTE: * The src argument is an XLisp object that returns either an * array of samples or NIL. The output of ifft is simply the * concatenation of the samples taken from the array. Later, * an ifft will be plugged in and this will return overlapped * adds of the ifft's. * * OVERLAP: stepsize must be less than or equal to the length * of real part of the transformed spectrum. A transform step * works like this:  * (1) shift the output buffer by stepsize samples, filling *     the end of the buffer with zeros * (2) get and transform an array of spectral coefficients * (3) multiply the result by a window * (4) add the result to the output buffer * (5) output the first stepsize samples of the buffer *  * DATA FORMAT: the DC component goes in array elem 0 * Cosine part is in elements 2*i-1 * Sine part is in elements 2*i * Nyquist frequency is in element length-1 */#include "samples.h"#include "fftn.h"table_type get_window_samples(LVAL window, sample_type **samples, long *len){    table_type result = NULL;    if (soundp(window)) {        sound_type window_sound = getsound(window);        xlprot1(window); /* maybe not necessary */        result = sound_to_table(window_sound);        xlpop();        *samples = result->samples;        *len = (long) (result->length + 0.5);    }    return result;}void ifft__fetch(register ifft_susp_type susp, snd_list_type snd_list){    int cnt = 0; /* how many samples computed */    int togo;    int n;    sample_block_type out;    register sample_block_values_type out_ptr;    register sample_block_values_type out_ptr_reg;    register long index_reg;    register sample_type * outbuf_reg;    falloc_sample_block(out, "ifft__fetch");    out_ptr = out->samples;    snd_list->block = out;    while (cnt < max_sample_block_len) { /* outer loop */	/* first compute how many samples to generate in inner loop: */	/* don't overflow the output sample block: */	togo = max_sample_block_len - cnt;        if (susp->src == NULL) {out:        togo = 0;   /* indicate termination */            break;      /* we're done */        }        if (susp->index >= susp->stepsize) {            long i;            long half_i;            int n;            LVAL elem;            susp->index = 0;            susp->array =                 xleval(cons(s_send, cons(susp->src, consa(s_next))));            if (susp->array == NULL) {                susp->src = NULL;                goto out;            } else if (!vectorp(susp->array)) {                xlerror("array expected", susp->array);            } else if (susp->samples == NULL) {                /* assume arrays are all the same size as first one;                   now that we know the size, we just have to do this                   first allocation.                 */                susp->length = getsize(susp->array);                if (susp->length < 1)                     xlerror("array has no elements", susp->array);                if (susp->window && (susp->window_len != susp->length))                    xlerror("window size and spectrum size differ",                             susp->array);                susp->samples =                     (sample_type *) calloc(susp->length * 2,                                           sizeof(sample_type));                susp->outbuf = (sample_type *) calloc(susp->length,                     sizeof(sample_type));            } else if (getsize(susp->array) != susp->length) {                xlerror("arrays must all be the same length", susp->array);            }            /* at this point, we have a new array to put samples */            /* real part will be susp->samples[0:n-1], */            /* im part in samples[n:2*n-1] */            n = susp->length;            elem = getelement(susp->array, 0);            if (ntype(elem) != FLONUM) {                xlerror("flonum expected", elem);            }            susp->samples[0] = (sample_type) getflonum(elem);            susp->samples[n] = 0;            half_i = 0;            for (i = 1; i < n - 1; i += 2) {                half_i++;                elem = getelement(susp->array, i);                if (ntype(elem) != FLONUM) {                    xlerror("flonum expected", elem);                }                susp->samples[half_i] = susp->samples[n - half_i] =                     (sample_type) (getflonum(elem) / 2.0);                elem = getelement(susp->array, i + 1);                if (ntype(elem) != FLONUM) {                    xlerror("flonum expected", elem);                }                susp->samples[n + half_i] =                    -(susp->samples[2*n - half_i] =                          (sample_type) (getflonum(elem) / 2.0));            }            if (n % 2 == 0) {                elem = getelement(susp->array, n - 1);                if (ntype(elem) != FLONUM) {                    xlerror("flonum expected", elem);                }                susp->samples[n / 2] = (sample_type) getflonum(elem);                susp->samples[n + (n / 2)] = 0;            }            susp->array = NULL; /* free the array */            /* here is where the IFFT and windowing should take place */            fftnf(1, &n, susp->samples, susp->samples + n, -1, 1.0);            if (susp->window) {                n = susp->length;                for (i = 0; i < n; i++) {                    susp->samples[i] *= susp->window[i];                }            }            /* shift the outbuf */            n = susp->length - susp->stepsize;            for (i = 0; i < n; i++) {                susp->outbuf[i] = susp->outbuf[i + susp->stepsize];            }            /* clear end of outbuf */            for (i = n; i < susp->length; i++) {                susp->outbuf[i] = 0;            }            /* add in the ifft result */            n = susp->length;            for (i = 0; i < n; i++) {                susp->outbuf[i] += susp->samples[i];            }/*            temp_fft = (double *) malloc (susp->length * sizeof(double));            if (temp_fft == 0) return;            big_samples = (double *) malloc (susp->length * sizeof(double));            if (big_samples == 0) return;            for (i = 0; i < susp->length; i++) {                big_samples[i] = (double) susp->samples[i];            }            rp = rfftw_create_plan(susp->length, FFTW_COMPLEX_TO_REAL, FFTW_ESTIMATE);            rfftw_one(rp, big_samples, temp_fft);            rfftw_destroy_plan(rp);            free(big_samples);            for (i = 0; i < susp->length; i++) {                setelement(result, i, cvflonum(temp_fft[i]));            }            free (temp_fft);*/        }        togo = MIN(togo, susp->stepsize - susp->index);	n = togo;	index_reg = susp->index;	outbuf_reg = susp->outbuf;	out_ptr_reg = out_ptr;	if (n) do { /* the inner sample computation loop */*out_ptr_reg++ = outbuf_reg[index_reg++];;	} while (--n); /* inner loop */	susp->index = index_reg;	susp->outbuf = outbuf_reg;	out_ptr += togo;	cnt += togo;    } /* outer loop */    /* test for termination */    if (togo == 0 && cnt == 0) {	snd_list_terminate(snd_list);    } else {	snd_list->block_len = cnt;	susp->susp.current += cnt;    }} /* ifft__fetch */void ifft_mark(ifft_susp_type susp){    if (susp->src) mark(susp->src);    if (susp->array) mark(susp->array);}void ifft_free(ifft_susp_type susp){    if (susp->samples) free(susp->samples);    if (susp->table) table_unref(susp->table);    if (susp->outbuf) free(susp->outbuf);    ffree_generic(susp, sizeof(ifft_susp_node), "ifft_free");}void ifft_print_tree(ifft_susp_type susp, int n){}sound_type snd_make_ifft(time_type t0, rate_type sr, LVAL src, long stepsize, LVAL window){    register ifft_susp_type susp;    /* sr specified as input parameter */    /* t0 specified as input parameter */    sample_type scale_factor = 1.0F;    falloc_generic(susp, ifft_susp_node, "snd_make_ifft");    susp->index = stepsize;    susp->length = 0;    susp->array = NULL;    susp->window_len = 0;    susp->outbuf = NULL;    susp->src = src;    susp->stepsize = stepsize;    susp->window = NULL;    susp->samples = NULL;    susp->table = get_window_samples(window, &susp->window, &susp->window_len);    susp->susp.fetch = ifft__fetch;    /* initialize susp state */    susp->susp.free = ifft_free;    susp->susp.sr = sr;    susp->susp.t0 = t0;    susp->susp.mark = ifft_mark;    susp->susp.print_tree = ifft_print_tree;    susp->susp.name = "ifft";    susp->susp.log_stop_cnt = UNKNOWN;    susp->susp.current = 0;    return sound_create((snd_susp_type)susp, t0, sr, scale_factor);}sound_type snd_ifft(time_type t0, rate_type sr, LVAL src, long stepsize, LVAL window){    return snd_make_ifft(t0, sr, src, stepsize, window);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -