⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 eqbandvvv.c

📁 Audacity是一款用於錄音和編輯聲音的、免費的開放源碼軟體。它可以執行於Mac OS X、Microsoft Windows、GNU/Linux和其它作業系統
💻 C
📖 第 1 页 / 共 2 页
字号:
#include "stdio.h"#ifndef mips#include "stdlib.h"#endif#include "xlisp.h"#include "sound.h"#include "falloc.h"#include "cext.h"#include "eqbandvvv.h"void eqbandvvv_free();typedef struct eqbandvvv_susp_struct {    snd_susp_node susp;    boolean started;    long terminate_cnt;    boolean logically_stopped;    sound_type input;    long input_cnt;    sample_block_values_type input_ptr;    sound_type hz;    long hz_cnt;    sample_block_values_type hz_ptr;    /* support for interpolation of hz */    sample_type hz_x1_sample;    double hz_pHaSe;    double hz_pHaSe_iNcR;    /* support for ramp between samples of hz */    double output_per_hz;    long hz_n;    sound_type gain;    long gain_cnt;    sample_block_values_type gain_ptr;    /* support for interpolation of gain */    sample_type gain_x1_sample;    double gain_pHaSe;    double gain_pHaSe_iNcR;    /* support for ramp between samples of gain */    double output_per_gain;    long gain_n;    sound_type width;    long width_cnt;    sample_block_values_type width_ptr;    /* support for interpolation of width */    sample_type width_x1_sample;    double width_pHaSe;    double width_pHaSe_iNcR;    /* support for ramp between samples of width */    double output_per_width;    long width_n;    double inp_scale;    double w1;    double sw;    double cw;    double J;    double gg;    double b0;    double b1;    double b2;    double a0;    double a1;    double a2;    double z1;    double z2;    boolean recompute;    double inp_period;} eqbandvvv_susp_node, *eqbandvvv_susp_type;#define log_of_2_over_2 0.3465735902799726547086void eqbandvvv_ssss_fetch(register eqbandvvv_susp_type susp, snd_list_type snd_list){    int cnt = 0; /* how many samples computed */    int togo;    int n;    sample_block_type out;    register sample_block_values_type out_ptr;    register sample_block_values_type out_ptr_reg;    register double w1_reg;    register double sw_reg;    register double cw_reg;    register double J_reg;    register double gg_reg;    register double b0_reg;    register double b1_reg;    register double b2_reg;    register double a0_reg;    register double a1_reg;    register double a2_reg;    register double z1_reg;    register double z2_reg;    register boolean recompute_reg;    register double inp_period_reg;    register sample_type width_scale_reg = susp->width->scale;    register sample_block_values_type width_ptr_reg;    register sample_type gain_scale_reg = susp->gain->scale;    register sample_block_values_type gain_ptr_reg;    register sample_type hz_scale_reg = susp->hz->scale;    register sample_block_values_type hz_ptr_reg;    register sample_type input_scale_reg = susp->input->scale;    register sample_block_values_type input_ptr_reg;    falloc_sample_block(out, "eqbandvvv_ssss_fetch");    out_ptr = out->samples;    snd_list->block = out;    while (cnt < max_sample_block_len) { /* outer loop */	/* first compute how many samples to generate in inner loop: */	/* don't overflow the output sample block: */	togo = max_sample_block_len - cnt;	/* don't run past the input input sample block: */	susp_check_term_log_samples(input, input_ptr, input_cnt);	togo = MIN(togo, susp->input_cnt);	/* don't run past the hz input sample block: */	susp_check_term_log_samples(hz, hz_ptr, hz_cnt);	togo = MIN(togo, susp->hz_cnt);	/* don't run past the gain input sample block: */	susp_check_term_log_samples(gain, gain_ptr, gain_cnt);	togo = MIN(togo, susp->gain_cnt);	/* don't run past the width input sample block: */	susp_check_term_log_samples(width, width_ptr, width_cnt);	togo = MIN(togo, susp->width_cnt);	/* don't run past terminate time */	if (susp->terminate_cnt != UNKNOWN &&	    susp->terminate_cnt <= susp->susp.current + cnt + togo) {	    togo = susp->terminate_cnt - (susp->susp.current + cnt);	    if (togo == 0) break;	}	/* don't run past logical stop time */	if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {	    int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);	    /* break if to_stop == 0 (we're at the logical stop)	     * AND cnt > 0 (we're not at the beginning of the	     * output block).	     */	    if (to_stop < togo) {		if (to_stop == 0) {		    if (cnt) {			togo = 0;			break;		    } else /* keep togo as is: since cnt == 0, we		            * can set the logical stop flag on this		            * output block		            */			susp->logically_stopped = true;		} else /* limit togo so we can start a new		        * block at the LST		        */		    togo = to_stop;	    }	}	n = togo;	w1_reg = susp->w1;	sw_reg = susp->sw;	cw_reg = susp->cw;	J_reg = susp->J;	gg_reg = susp->gg;	b0_reg = susp->b0;	b1_reg = susp->b1;	b2_reg = susp->b2;	a0_reg = susp->a0;	a1_reg = susp->a1;	a2_reg = susp->a2;	z1_reg = susp->z1;	z2_reg = susp->z2;	recompute_reg = susp->recompute;	inp_period_reg = susp->inp_period;	width_ptr_reg = susp->width_ptr;	gain_ptr_reg = susp->gain_ptr;	hz_ptr_reg = susp->hz_ptr;	input_ptr_reg = susp->input_ptr;	out_ptr_reg = out_ptr;	if (n) do { /* the inner sample computation loop */            double z0;	    w1_reg = PI2 * (hz_scale_reg * *hz_ptr_reg++) * inp_period_reg;	    sw_reg = sin(w1_reg);	    cw_reg = cos(w1_reg);	    b1_reg = -2.0 * cw_reg;	    a1_reg = -b1_reg;	    J_reg = sqrt((gain_scale_reg * *gain_ptr_reg++));	    recompute_reg = true;	    recompute_reg = true;	    recompute_reg = true;	    if (recompute_reg) {	        /* a0_reg = 1.0 + gg_reg / J_reg; */	        double a_0_recip = J_reg / (J_reg + gg_reg);	        recompute_reg = false;	        gg_reg = sw_reg * sinh(log_of_2_over_2 * (width_scale_reg * *width_ptr_reg++) * w1_reg / sw_reg);	        b0_reg = (1.0 + gg_reg * J_reg) * a_0_recip;	        b1_reg *= a_0_recip;	        b2_reg = (1.0 - gg_reg * J_reg) * a_0_recip;	        a1_reg *= a_0_recip;	        a2_reg = (gg_reg / J_reg - 1.0) * a_0_recip;	    }    z0 = (input_scale_reg * *input_ptr_reg++) + a1_reg*z1_reg + a2_reg*z2_reg;    *out_ptr_reg++ = (sample_type) (z0*b0_reg + z1_reg*b1_reg + z2_reg*b2_reg);    z2_reg = z1_reg; z1_reg = z0;;	} while (--n); /* inner loop */	susp->z1 = z1_reg;	susp->z2 = z2_reg;	susp->recompute = recompute_reg;	/* using width_ptr_reg is a bad idea on RS/6000: */	susp->width_ptr += togo;	/* using gain_ptr_reg is a bad idea on RS/6000: */	susp->gain_ptr += togo;	/* using hz_ptr_reg is a bad idea on RS/6000: */	susp->hz_ptr += togo;	/* using input_ptr_reg is a bad idea on RS/6000: */	susp->input_ptr += togo;	out_ptr += togo;	susp_took(input_cnt, togo);	susp_took(hz_cnt, togo);	susp_took(gain_cnt, togo);	susp_took(width_cnt, togo);	cnt += togo;    } /* outer loop */    /* test for termination */    if (togo == 0 && cnt == 0) {	snd_list_terminate(snd_list);    } else {	snd_list->block_len = cnt;	susp->susp.current += cnt;    }    /* test for logical stop */    if (susp->logically_stopped) {	snd_list->logically_stopped = true;    } else if (susp->susp.log_stop_cnt == susp->susp.current) {	susp->logically_stopped = true;    }} /* eqbandvvv_ssss_fetch */void eqbandvvv_siii_fetch(register eqbandvvv_susp_type susp, snd_list_type snd_list){    int cnt = 0; /* how many samples computed */    int togo;    int n;    sample_block_type out;    register sample_block_values_type out_ptr;    register sample_block_values_type out_ptr_reg;    register double w1_reg;    register double sw_reg;    register double cw_reg;    register double J_reg;    register double gg_reg;    register double b0_reg;    register double b1_reg;    register double b2_reg;    register double a0_reg;    register double a1_reg;    register double a2_reg;    register double z1_reg;    register double z2_reg;    register boolean recompute_reg;    register double inp_period_reg;    register double width_pHaSe_iNcR_rEg = susp->width_pHaSe_iNcR;    register double width_pHaSe_ReG;    register sample_type width_x1_sample_reg;    register double gain_pHaSe_iNcR_rEg = susp->gain_pHaSe_iNcR;    register double gain_pHaSe_ReG;    register sample_type gain_x1_sample_reg;    register double hz_pHaSe_iNcR_rEg = susp->hz_pHaSe_iNcR;    register double hz_pHaSe_ReG;    register sample_type hz_x1_sample_reg;    register sample_type input_scale_reg = susp->input->scale;    register sample_block_values_type input_ptr_reg;    falloc_sample_block(out, "eqbandvvv_siii_fetch");    out_ptr = out->samples;    snd_list->block = out;    /* make sure sounds are primed with first values */    if (!susp->started) {	susp->started = true;	susp_check_term_log_samples(hz, hz_ptr, hz_cnt);	susp->hz_x1_sample = susp_fetch_sample(hz, hz_ptr, hz_cnt);	susp->w1 = PI2 * susp->hz_x1_sample * susp->inp_period;	susp->sw = sin(susp->w1);	susp->cw = cos(susp->w1);	susp->b1 = -2.0 * susp->cw;	susp->a1 = -susp->b1;	susp->recompute = true;	susp_check_term_log_samples(gain, gain_ptr, gain_cnt);	susp->gain_x1_sample = susp_fetch_sample(gain, gain_ptr, gain_cnt);	susp->J = sqrt(susp->gain_x1_sample);	susp->recompute = true;	susp_check_term_log_samples(width, width_ptr, width_cnt);	susp->width_x1_sample = susp_fetch_sample(width, width_ptr, width_cnt);	susp->recompute = true;    }    while (cnt < max_sample_block_len) { /* outer loop */	/* first compute how many samples to generate in inner loop: */	/* don't overflow the output sample block: */	togo = max_sample_block_len - cnt;	/* don't run past the input input sample block: */	susp_check_term_log_samples(input, input_ptr, input_cnt);	togo = MIN(togo, susp->input_cnt);	/* don't run past terminate time */	if (susp->terminate_cnt != UNKNOWN &&	    susp->terminate_cnt <= susp->susp.current + cnt + togo) {	    togo = susp->terminate_cnt - (susp->susp.current + cnt);	    if (togo == 0) break;	}	/* don't run past logical stop time */	if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {	    int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);	    /* break if to_stop == 0 (we're at the logical stop)	     * AND cnt > 0 (we're not at the beginning of the	     * output block).	     */	    if (to_stop < togo) {		if (to_stop == 0) {		    if (cnt) {			togo = 0;			break;		    } else /* keep togo as is: since cnt == 0, we		            * can set the logical stop flag on this		            * output block		            */			susp->logically_stopped = true;		} else /* limit togo so we can start a new		        * block at the LST		        */		    togo = to_stop;	    }	}	n = togo;	w1_reg = susp->w1;	sw_reg = susp->sw;	cw_reg = susp->cw;	J_reg = susp->J;	gg_reg = susp->gg;	b0_reg = susp->b0;	b1_reg = susp->b1;	b2_reg = susp->b2;	a0_reg = susp->a0;	a1_reg = susp->a1;	a2_reg = susp->a2;	z1_reg = susp->z1;	z2_reg = susp->z2;	recompute_reg = susp->recompute;	inp_period_reg = susp->inp_period;	width_pHaSe_ReG = susp->width_pHaSe;	width_x1_sample_reg = susp->width_x1_sample;	gain_pHaSe_ReG = susp->gain_pHaSe;	gain_x1_sample_reg = susp->gain_x1_sample;	hz_pHaSe_ReG = susp->hz_pHaSe;	hz_x1_sample_reg = susp->hz_x1_sample;	input_ptr_reg = susp->input_ptr;	out_ptr_reg = out_ptr;	if (n) do { /* the inner sample computation loop */            double z0;	    if (hz_pHaSe_ReG >= 1.0) {/* fixup-depends hz */		/* pick up next sample as hz_x1_sample: */		susp->hz_ptr++;		susp_took(hz_cnt, 1);		hz_pHaSe_ReG -= 1.0;		susp_check_term_log_samples_break(hz, hz_ptr, hz_cnt, hz_x1_sample_reg);		hz_x1_sample_reg = susp_current_sample(hz, hz_ptr);		w1_reg = susp->w1 = PI2 * hz_x1_sample_reg * inp_period_reg;		sw_reg = susp->sw = sin(w1_reg);		cw_reg = susp->cw = cos(w1_reg);		b1_reg = susp->b1 = -2.0 * cw_reg;		a1_reg = susp->a1 = -b1_reg;		recompute_reg = susp->recompute = true;	    }	    if (gain_pHaSe_ReG >= 1.0) {/* fixup-depends gain */		/* pick up next sample as gain_x1_sample: */		susp->gain_ptr++;		susp_took(gain_cnt, 1);		gain_pHaSe_ReG -= 1.0;		susp_check_term_log_samples_break(gain, gain_ptr, gain_cnt, gain_x1_sample_reg);		gain_x1_sample_reg = susp_current_sample(gain, gain_ptr);		J_reg = susp->J = sqrt(gain_x1_sample_reg);		recompute_reg = susp->recompute = true;	    }	    if (width_pHaSe_ReG >= 1.0) {/* fixup-depends width */		/* pick up next sample as width_x1_sample: */		susp->width_ptr++;		susp_took(width_cnt, 1);		width_pHaSe_ReG -= 1.0;		susp_check_term_log_samples_break(width, width_ptr, width_cnt, width_x1_sample_reg);		width_x1_sample_reg = susp_current_sample(width, width_ptr);		recompute_reg = susp->recompute = true;	    }	    if (recompute_reg) {	        /* a0_reg = 1.0 + gg_reg / J_reg; */	        double a_0_recip = J_reg / (J_reg + gg_reg);	        recompute_reg = false;	        gg_reg = sw_reg * sinh(log_of_2_over_2 * width_x1_sample_reg * w1_reg / sw_reg);	        b0_reg = (1.0 + gg_reg * J_reg) * a_0_recip;	        b1_reg *= a_0_recip;	        b2_reg = (1.0 - gg_reg * J_reg) * a_0_recip;	        a1_reg *= a_0_recip;	        a2_reg = (gg_reg / J_reg - 1.0) * a_0_recip;	    }    z0 = (input_scale_reg * *input_ptr_reg++) + a1_reg*z1_reg + a2_reg*z2_reg;    *out_ptr_reg++ = (sample_type) (z0*b0_reg + z1_reg*b1_reg + z2_reg*b2_reg);    z2_reg = z1_reg; z1_reg = z0;;	    hz_pHaSe_ReG += hz_pHaSe_iNcR_rEg;	    gain_pHaSe_ReG += gain_pHaSe_iNcR_rEg;	    width_pHaSe_ReG += width_pHaSe_iNcR_rEg;	} while (--n); /* inner loop */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -