📄 calc_mpe_dbn.m
字号:
function [mpe, ll] = calc_mpe_dbn(engine, evidence, break_ties)
% CALC_MPE Computes the most probable explanation of the evidence
% [mpe, ll] = calc_mpe_dbn(engine, evidence, break_ties)
%
% INPUT
% engine must support max-propagation
% evidence{i,t} is the observed value of node i in slice t, or [] if hidden
%
% OUTPUT
% mpe{i,t} is the most likely value of node i (cell array!)
% ll is the log-likelihood of the globally best assignment
%
% This currently only works when all hidden nodes are discrete
if nargin < 3, break_ties = 0; end
if break_ties
disp('warning: break ties is ignored')
end
[engine, ll] = enter_evidence(engine, evidence, 'maximize', 1);
observed = ~isemptycell(evidence);
[ss T] = size(evidence);
scalar = 1;
N = length(evidence);
mpe = cell(ss,T);
bnet = bnet_from_engine(engine);
ns = bnet.node_sizes;
for t=1:T
for i=1:ss
m = marginal_nodes(engine, i, t);
% observed nodes are all set to 1 inside the inference engine, so we must undo this
if observed(i,t)
mpe{i,t} = evidence{i,t};
else
assert(length(m.T) == ns(i));
mpe{i,t} = argmax(m.T);
end
end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -