📄 enter_evidence.m
字号:
function [engine, loglik] = enter_evidence(engine, evidence, varargin)
% ENTER_EVIDENCE Add the specified evidence to the network (bk_ff_hmm)
% [engine, loglik] = enter_evidence(engine, evidence, ...)
%
% evidence{i,t} = [] if if X(i,t) is hidden, and otherwise contains its observed value (scalar or column vector)
%
% The following optional arguments can be specified in the form of name/value pairs:
% [default value in brackets]
%
% maximize - if 1, does max-product (not yet supported), else sum-product [0]
% filter - if 1, do filtering, else smoothing [0]
%
% e.g., engine = enter_evidence(engine, ev, 'maximize', 1)
maximize = 0;
filter = 0;
% parse optional params
args = varargin;
nargs = length(args);
if nargs > 0
for i=1:2:nargs
switch args{i},
case 'maximize', maximize = args{i+1};
case 'filter', filter = args{i+1};
otherwise,
error(['invalid argument name ' args{i}]);
end
end
end
assert(~maximize);
bnet = bnet_from_engine(engine);
ss = length(bnet.intra);
onodes = bnet.observed;
hnodes = mysetdiff(1:ss, onodes);
T = size(evidence, 2);
assert(~any(isemptycell(evidence(onodes,:))));
obslik = mk_hmm_obs_lik_mat(bnet, onodes, evidence);
ns = bnet.node_sizes_slice;
ns(onodes) = 1;
[gamma, loglik, marginals, marginalsT] = bk_ff_fb(engine.prior, engine.transmat, obslik, filter, hnodes, ns);
for t=1:T
for i=hnodes(:)'
engine.marginals{i,t} = pot_to_marginal(marginalsT{i,t});
end
for i=onodes(:)'
m.domain = i + (t-1)*ss;
m.T = 1;
engine.marginals{i,t} = m;
end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -