📄 filter_evidence_obj_oriented.m
字号:
function [marginal, msg, loglik] = filter_evidence_old(engine, evidence)
% [marginal, msg, loglik] = filter_evidence(engine, evidence) (pearl_dbn)
[ss T] = size(evidence);
bnet = bnet_from_engine(engine);
bnet2 = dbn_to_bnet(bnet, T);
ns = bnet2.node_sizes;
hnodes = mysetdiff(1:ss, engine.onodes);
hnodes = hnodes(:)';
[engine.parent_index, engine.child_index] = mk_pearl_msg_indices(bnet2);
msg = init_msgs(bnet2.dag, ns, evidence);
msg = init_ev_msgs(engine, evidence, msg);
verbose = 1;
if verbose, fprintf('\nold filtering\n'); end
for t=1:T
% update pi
for i=hnodes
n = i + (t-1)*ss;
ps = parents(bnet2.dag, n);
if t==1
e = bnet.equiv_class(i,1);
else
e = bnet.equiv_class(i,2);
end
msg{n}.pi = compute_pi(bnet.CPD{e}, n, ps, msg);
%if verbose, fprintf('%d computes pi\n', n); disp(msg{n}.pi); end
msg{n}.pi = normalise(msg{n}.pi(:) .* msg{n}.lambda_from_self(:));
if verbose, fprintf('%d recomputes pi\n', n); disp(msg{n}.pi); end
end
% send pi msg to children
for i=hnodes
n = i + (t-1)*ss;
cs = children(bnet2.dag, n);
for c=cs(:)'
j = engine.parent_index{c}(n); % n is c's j'th parent
pi_msg = normalise(compute_pi_msg(n, cs, msg, c, ns));
msg{c}.pi_from_parent{j} = pi_msg;
if verbose, fprintf('%d sends pi to %d\n', n,c); disp(pi_msg); end
end
end
end
marginal = cell(ss,T);
lik = zeros(1,ss*T);
for t=1:T
for i=1:ss
n = i + (t-1)*ss;
%[bel, lik(n)] = normalise(msg{n}.pi .* msg{n}.lambda);
[bel, lik(n)] = normalise(msg{n}.pi);
marginal{i,t} = bel;
end
end
loglik = sum(log(lik));
%%%%%%%
function lambda = compute_lambda(n, cs, msg, ns)
% Pearl p183 eq 4.50
lambda = prod_lambda_msgs(n, cs, msg, ns);
%%%%%%%
function pi_msg = compute_pi_msg(n, cs, msg, c, ns)
% Pearl p183 eq 4.53 and 4.51
pi_msg = msg{n}.pi .* prod_lambda_msgs(n, cs, msg, ns, c);
%%%%%%%%%
function lam = prod_lambda_msgs(n, cs, msg, ns, except)
if nargin < 5, except = -1; end
%lam = msg{n}.lambda_from_self(:);
lam = ones(ns(n), 1);
for i=1:length(cs)
c = cs(i);
if c ~= except
lam = lam .* msg{n}.lambda_from_child{i};
end
end
%%%%%%%%%%%
function msg = init_msgs(dag, ns, evidence)
% INIT_MSGS Initialize the lambda/pi message and state vectors (pearl_dbn)
% msg = init_msgs(dag, ns, evidence)
%
% We assume all the hidden nodes are discrete.
N = length(dag);
msg = cell(1,N);
observed = ~isemptycell(evidence(:));
for n=1:N
ps = parents(dag, n);
msg{n}.pi_from_parent = cell(1, length(ps));
for i=1:length(ps)
p = ps(i);
msg{n}.pi_from_parent{i} = ones(ns(p), 1);
end
cs = children(dag, n);
msg{n}.lambda_from_child = cell(1, length(cs));
for i=1:length(cs)
c = cs(i);
msg{n}.lambda_from_child{i} = ones(ns(n), 1);
end
msg{n}.lambda = ones(ns(n), 1);
msg{n}.pi = ones(ns(n), 1);
msg{n}.lambda_from_self = ones(ns(n), 1);
end
%%%%%%%%%
function msg = init_ev_msgs(engine, evidence, msg)
% Initialize the lambdas with any evidence
[ss T] = size(evidence);
bnet = bnet_from_engine(engine);
pot_type = 'd';
t = 1;
hnodes = mysetdiff(1:ss, engine.onodes);
for i=hnodes(:)'
c = engine.obschild(i);
if c > 0
fam = family(bnet.dag, c);
e = bnet.equiv_class(c, 1);
CPDpot = CPD_to_pot(pot_type, bnet.CPD{e}, fam, bnet.node_sizes(:), bnet.cnodes(:), evidence(:,1));
temp = pot_to_marginal(CPDpot);
n = i;
msg{n}.lambda_from_self = temp.T;
end
end
for t=2:T
for i=hnodes(:)'
c = engine.obschild(i);
if c > 0
fam = family(bnet.dag, c, 2);
e = bnet.equiv_class(c, 2);
CPDpot = CPD_to_pot(pot_type, bnet.CPD{e}, fam, bnet.node_sizes(:), bnet.cnodes(:), evidence(:,t-1:t));
temp = pot_to_marginal(CPDpot);
n = i + (t-1)*ss;
msg{n}.lambda_from_self = temp.T;
end
end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -