📄 compute_posterior_dbn.m
字号:
function post = compute_posterior_dbn(bnet, state, i, n, strides, families, ...
CPT)
% COMPUTE_POSTERIOR
%
% post = compute_posterior(bnet, state, i, n, strides, families,
% cpts)
%
% Compute the posterior distribution on node X_i^n of a DBN,
% conditional on evidence in the cell array state
%
% strides is the cached result of compute_strides(bnet)
% families is the cached result of compute_families(bnet)
% cpt is the cached result of get_cpts(bnet)
%
% post is a one-dimensional table
% First multiply in the cpt of the node itself
post = get_slice_dbn(bnet, state, i, n, i, n, strides, families, CPT);
post = post(:);
% Then multiply in CPTs of children that are in this slice
for j = children(bnet.intra, i)
slice = get_slice_dbn(bnet, state, j, n, i, n, strides, families, CPT);
post = post.*slice(:);
end
% Finally, if necessary, multiply in CPTs of children in the next
% slice
if (n < size(state,2))
for j = children(bnet.inter, i)
slice = get_slice_dbn(bnet, state, j, n+1, i, n, strides, families, ...
CPT);
post = post.*slice(:);
end
end
post = normalise(post);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -