📄 learn_params.m
字号:
best_attr=0; %the attribute with the max_gain
best_split = []; %the split of T according to the value of best_attr
cur_best_threshhold = 0; %the threshhold for split continuous attribute
best_threshhold=0;
% compute Info(T) (for discrete output)
if (output_type == 0)
class_split_T = split_cases(fam_ev,node_sizes,node_types,T,size(fam_ev,1),0); %split cases according to class
info_T = compute_info (fam_ev, T, class_split_T);
else % compute R(T) (for cts output)
% N = size(fam_ev,2);
% cases_T = fam_ev(size(fam_ev,1),T); %get the output value for cases T
% std_T = std(cases_T);
% avg_y_T = mean(cases_T);
sqr_T = cases_T - avg_y_T;
R_T = sum(sqr_T.*sqr_T)/N; % get R(T) = 1/N * SUM(y-avg_y)^2
info_T = R_T;
end
for i=1:(size_fam-1)
if (myismember(i,candidate_attrs)) %if this attribute still in the candidate attribute set
if (node_types(i)==0) %discrete attibute
split_T = split_cases(fam_ev,node_sizes,node_types,T,i,0); %split cases according to value of attribute i
% For cts output, we compute the least square gain.
% For discrete output, we compute gain ratio
cur_gain = compute_gain(fam_ev,node_sizes,node_types,T,info_T,i,split_T,0,output_type); %gain ratio
else %cts attribute
%get the values of this attribute
ev = fam_ev(:,T);
values = ev(i,:);
sort_v = sort(values);
%remove the duplicate values in sort_v
v_set = unique(sort_v);
best_gain = 0;
best_threshhold = 0;
best_split1 = [];
%find the best split for this cts attribute
% see "Quilan 96: Improved Use of Continuous Attributes in C4.5"
for j=1:(size(v_set,2)-1)
mid_v = (v_set(j)+v_set(j+1))/2;
split_T = split_cases(fam_ev,node_sizes,node_types,T,i,mid_v); %split cases according to value of attribute i (<=mid_v)
% For cts output, we compute the least square gain.
% For discrete output, we use Quilan 96: use information gain instead of gain ratio to select threshhold
cur_gain = compute_gain(fam_ev,node_sizes,node_types,T,info_T,i,split_T,1,output_type);
%if (i==6)
% fprintf('gain %8.5f threshhold %6.3f spliting %d\n', cur_gain, mid_v, size(split_T{1},2));
%end
if (best_gain < cur_gain)
best_gain = cur_gain;
best_threshhold = mid_v;
%best_split1 = split_T; %here we need to copy array, not good!!! (maybe we can compute after we get best_attr
end
end
%recalculate the gain_ratio of the best_threshhold
split_T = split_cases(fam_ev,node_sizes,node_types,T,i,best_threshhold);
best_gain = compute_gain(fam_ev,node_sizes,node_types,T,info_T,i,split_T,0,output_type); %gain_ratio
if (output_type==0) %for discrete output
cur_gain = best_gain-log2(size(v_set,2)-1)/size_t; % Quilan 96: use the gain_ratio-log2(N-1)/|D| as the gain of this attr
else %for cts output
cur_gain = best_gain;
end
end
if (max_gain < cur_gain)
max_gain = cur_gain;
best_attr = i;
cur_best_threshhold=best_threshhold; %save the threshhold
%best_split = split_T; %here we need to copy array, not good!!! So we will recalculate in below line 313
end
end
end
% stop splitting if gain is too small
if (max_gain==0 | (output_type==0 & max_gain < min_gain) | (output_type==1 & max_gain < cts_min_gain))
if (output_type==0)
tree.nodes(tree.num_node).probs=class_freqs/size_t; %the prob for each value of class node
tree.nodes(tree.num_node).error.all_error=1-top1_class_cases/size_t;
tree.nodes(tree.num_node).error.all_error_num=size_t - top1_class_cases;
fprintf('Create leaf node(nogain) %d. Class %d Cases %d Error %d \n',tree.num_node, top1_class, size_t, size_t - top1_class_cases );
else
fprintf('Create leaf node(nogain) %d. Mean %8.4f Std %8.4f Cases %d \n',tree.num_node, avg_y_T, std_T, size_t);
end
return;
end
%get the split of cases according to the best split attribute
if (node_types(best_attr)==0) %discrete attibute
best_split = split_cases(fam_ev,node_sizes,node_types,T,best_attr,0);
else
best_split = split_cases(fam_ev,node_sizes,node_types,T,best_attr,cur_best_threshhold);
end
%(4) best_attr = AttributeWithBestGain;
%(5) if best_attr is continuous ???? why need this? maybe the value in the decision tree must appeared in data
% find threshhold in all cases that <= max_V
% change the split of T
tree.nodes(tree.num_node).split_id=best_attr;
tree.nodes(tree.num_node).split_threshhold=cur_best_threshhold; %for cts attribute only
%note: below threshhold rejust is linera search, so it is slow. A better method is described in paper "Efficient C4.5"
%if (output_type==0)
if (node_types(best_attr)==1) %is a continuous attribute
%find the value that approximate best_threshhold from below (the largest that <= best_threshhold)
best_value=0;
for i=1:size(fam_ev,2) %note: need to search in all cases for all tree, not just in cases for this node
val = fam_ev(best_attr,i);
if (val <= cur_best_threshhold & val > best_value) %val is more clear to best_threshhold
best_value=val;
end
end
tree.nodes(tree.num_node).split_threshhold=best_value; %for cts attribute only
end
%end
if (output_type == 0)
fprintf('Create node %d split at %d gain %8.4f Th %d. Class %d Cases %d Error %d \n',tree.num_node, best_attr, max_gain, tree.nodes(tree.num_node).split_threshhold, top1_class, size_t, size_t - top1_class_cases );
else
fprintf('Create node %d split at %d gain %8.4f Th %d. Mean %8.4f Cases %d\n',tree.num_node, best_attr, max_gain, tree.nodes(tree.num_node).split_threshhold, avg_y_T, size_t );
end
%(6) Foreach T' in the split_T
% if T' is Empty
% Child of node_id is a leaf
% else
% Child of node_id = split_tree (T')
tree.nodes(new_node).is_leaf=0; %because this node will be split, it is not leaf now
for i=1:size(best_split,2)
if (size(best_split{i},2)==0) %T(i) is empty
%create one new leaf node
tree.num_node=tree.num_node+1;
tree.nodes(tree.num_node).used=1; %flag this node is used (0 means node not used, it will be removed from tree at last to save memory)
tree.nodes(tree.num_node).is_leaf=1;
tree.nodes(tree.num_node).children=[];
tree.nodes(tree.num_node).split_id=0;
tree.nodes(tree.num_node).split_threshhold=0;
if (output_type == 0)
tree.nodes(tree.num_node).probs=zeros(1,num_cat); %the prob for each value of class node
tree.nodes(tree.num_node).probs(top1_class)=1; %use the majority class of parent node, like for binary class,
%and majority is class 2, then the CPT is [0 1]
%we may need to use prior to do smoothing, to get [0.001 0.999]
tree.nodes(tree.num_node).error.self_error=0;
tree.nodes(tree.num_node).error.all_error=0;
tree.nodes(tree.num_node).error.all_error_num=0;
else
tree.nodes(tree.num_node).mean = avg_y_T; %just use parent node's mean value
tree.nodes(tree.num_node).std = std_T;
end
%add the new leaf node to parents
num_children=size(tree.nodes(new_node).children,2);
tree.nodes(new_node).children(num_children+1)=tree.num_node;
if (output_type==0)
fprintf('Create leaf node(nullset) %d. %d-th child of Father %d Class %d\n',tree.num_node, i, new_node, top1_class );
else
fprintf('Create leaf node(nullset) %d. %d-th child of Father %d \n',tree.num_node, i, new_node );
end
else
if (node_types(best_attr)==0) % if attr is discrete, it should be removed from the candidate set
new_candidate_attrs = mysetdiff(candidate_attrs,[best_attr]);
else
new_candidate_attrs = candidate_attrs;
end
new_sub_node = split_dtree (CPD, fam_ev, node_sizes, node_types, stop_cases, min_gain, best_split{i}, new_candidate_attrs, num_cat);
%tree.nodes(parent_id).error.all_error += tree.nodes(new_sub_node).error.all_error;
fprintf('Add subtree node %d to %d. #nodes %d\n',new_sub_node,new_node, tree.num_node );
% tree.nodes(new_node).error.all_error_num = tree.nodes(new_node).error.all_error_num + tree.nodes(new_sub_node).error.all_error_num;
%add the new leaf node to parents
num_children=size(tree.nodes(new_node).children,2);
tree.nodes(new_node).children(num_children+1)=new_sub_node;
end
end
%(7) Compute errors of N; for doing pruning
% get the total error for the subtree
if (output_type==0)
tree.nodes(new_node).error.all_error=tree.nodes(new_node).error.all_error_num/size_t;
end
%doing pruning, but doing here is not so efficient, because it is bottom up.
%if tree.nodes()
%after doing pruning, need to update the all_error to self_error
%(8) Return N
%(1) For discrete output, we use GainRatio defined as below
% Gain(X,T)
% GainRatio(X,T) = ----------
% SplitInfo(X,T)
% where
% Gain(X,T) = Info(T) - Info(X,T)
% |Ti|
% Info(X,T) = Sum for i from 1 to n of ( ---- * Info(Ti))
% |T|
% SplitInfo(D,T) is the information due to the split of T on the basis
% of the value of the categorical attribute D. Thus SplitInfo(D,T) is
% I(|T1|/|T|, |T2|/|T|, .., |Tm|/|T|)
% where {T1, T2, .. Tm} is the partition of T induced by the value of D.
% Definition of Info(Ti)
% If a set T of records is partitioned into disjoint exhaustive classes C1, C2, .., Ck on the basis of the
% value of the categorical attribute, then the information needed to identify the class of an element of T
% is Info(T) = I(P), where P is the probability distribution of the partition (C1, C2, .., Ck):
% P = (|C1|/|T|, |C2|/|T|, ..., |Ck|/|T|)
% Here I(P) is defined as
% I(P) = -(p1*log(p1) + p2*log(p2) + .. + pn*log(pn))
%
%(2) For continuous output (regression tree), we use least squares score (adapted from Leo Breiman's book "Classification and regression trees", page 231
% The original support only binary split, we further extend it to permit multiple-child split
%
% Delta_R = R(T) - Sum for all childe nodes Ti (R(Ti))
% Where R(Ti)= 1/N * Sum for all cases i in node Ti ((yi - avg_y(Ti))^2)
% here N is the number of all training cases for construct the regression tree
% avg_y(Ti) is the average value for output variable for the cases in node Ti
function gain_score = compute_gain (fam_ev, node_sizes, node_types, T, info_T, attr_id, split_T, score_type, output_type)
% COMPUTE_GAIN Compute the score for the split of cases T using attribute attr_id
% gain_score = compute_gain (fam_ev, T, attr_id, node_size, method)
%
% fam_ev(i,j) is the value of attribute i in j-th training cases, the last row is for the class label (self_ev)
% T(i) is the index of i-th cases in current decision tree node, we need split it further
% attr_id is the index of current node considered for a split
% split_T{i} is the i_th subset in partition of cases T according to the value of attribute attr_id
% score_type if 0, is gain ratio, 1 is information gain (only apply to discrete output)
% node_size(i) the node size of i-th node in the family
% output_type: 0 means discrete output, 1 means continuous output.
gain_score=0;
% ***********for DISCRETE output*******************************************************
if (output_type == 0)
% compute Info(T)
total_cnt = size(T,2);
if (total_cnt==0)
return;
end;
%class_split_T = split_cases(fam_ev,node_sizes,node_types,T,size(fam_ev,1),0); %split cases according to class
%info_T = compute_info (fam_ev, T, class_split_T);
% compute Info(X,T)
num_class = size(split_T,2);
subset_sizes = zeros(1,num_class);
info_ti = zeros(1,num_class);
for i=1:num_class
subset_sizes(i)=size(split_T{i},2);
if (subset_sizes(i)~=0)
class_split_Ti = split_cases(fam_ev,node_sizes,node_types,split_T{i},size(fam_ev,1),0); %split cases according to class
info_ti(i) = compute_info(fam_ev, split_T{i}, class_split_Ti);
end
end
ti_ratios = subset_sizes/total_cnt; %get the |Ti|/|T|
info_X_T = sum(ti_ratios.*info_ti);
%get Gain(X,T)
gain_X_T = info_T - info_X_T;
if (score_type == 1) %information gain
gain_score=gain_X_T;
return;
end
%compute the SplitInfo(X,T) //is this also for cts attr, only split into two subsets
splitinfo_T = compute_info (fam_ev, T, split_T);
if (splitinfo_T~=0)
gain_score = gain_X_T/splitinfo_T;
end
% ************for continuous output**************************************************
else
N = size(fam_ev,2);
% compute R(Ti)
num_class = size(split_T,2);
R_Ti = zeros(1,num_class);
for i=1:num_class
if (size(split_T{i},2)~=0)
cases_T = fam_ev(size(fam_ev,1),split_T{i});
avg_y_T = mean(cases_T);
sqr_T = cases_T - avg_y_T;
R_Ti(i) = sum(sqr_T.*sqr_T)/N; % get R(Ti) = 1/N * SUM(y-avg_y)^2
end
end
%delta_R = R(T) - SUM(R(Ti))
gain_score = info_T - sum(R_Ti);
end
% Definition of Info(Ti)
% If a set T of records is partitioned into disjoint exhaustive classes C1, C2, .., Ck on the basis of the
% value of the categorical attribute, then the information needed to identify the class of an element of T
% is Info(T) = I(P), where P is the probability distribution of the partition (C1, C2, .., Ck):
% P = (|C1|/|T|, |C2|/|T|, ..., |Ck|/|T|)
% Here I(P) is defined as
% I(P) = -(p1*log(p1) + p2*log(p2) + .. + pn*log(pn))
function info = compute_info (fam_ev, T, split_T)
% COMPUTE_INFO compute the information for the split of T into split_T
% info = compute_info (fam_ev, T, split_T)
total_cnt = size(T,2);
num_class = size(split_T,2);
subset_sizes = zeros(1,num_class);
probs = zeros(1,num_class);
log_probs = zeros(1,num_class);
for i=1:num_class
subset_sizes(i)=size(split_T{i},2);
end
probs = subset_sizes/total_cnt;
%log_probs = log2(probs); % if probs(i)=0, the log2(probs(i)) will be Inf
for i=1:size(probs,2)
if (probs(i)~=0)
log_probs(i)=log2(probs(i));
end
end
info = sum(-(probs.*log_probs));
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -